{"title":"Sharp interface analysis of a diffuse interface model for cell blebbing with linker dynamics","authors":"Philipp Nöldner, Martin Burger, Harald Garcke","doi":"10.1002/zamm.202300101","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the convergence of solutions of a recently proposed diffuse interface/phase field model for cell blebbing by means of matched asymptotic expansions. It is a biological phenomenon that increasingly attracts attention by both experimental and theoretical communities. Key to understanding the process of cell blebbing mechanically are proteins that link the cell cortex and the cell membrane. Another important model component is the bending energy of the cell membrane and cell cortex which accounts for differential equations up to sixth order. Both aspects pose interesting mathematical challenges that will be addressed in this work like showing non‐singularity formation for the pressure at boundary layers, deriving equations for asymptotic series coefficients of uncommonly high order, and dealing with a highly coupled system of equations.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":"137 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We investigate the convergence of solutions of a recently proposed diffuse interface/phase field model for cell blebbing by means of matched asymptotic expansions. It is a biological phenomenon that increasingly attracts attention by both experimental and theoretical communities. Key to understanding the process of cell blebbing mechanically are proteins that link the cell cortex and the cell membrane. Another important model component is the bending energy of the cell membrane and cell cortex which accounts for differential equations up to sixth order. Both aspects pose interesting mathematical challenges that will be addressed in this work like showing non‐singularity formation for the pressure at boundary layers, deriving equations for asymptotic series coefficients of uncommonly high order, and dealing with a highly coupled system of equations.
期刊介绍:
ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.