Optimal Operation of Domestic and Industrial Sewage Treatment Plants Using Machine Learning Methods

Q4 Social Sciences Revista de Gestao Social e Ambiental Pub Date : 2023-10-18 DOI:10.24857/rgsa.v17n10-040
Sarah Lilian de Lima Silva, Marcos Sousa Leite, Thalita Cristine Ribeiro Lucas Fernandes, Sidinei Kleber Da Silva, Antonio Carlos Brandão De Araújo
{"title":"Optimal Operation of Domestic and Industrial Sewage Treatment Plants Using Machine Learning Methods","authors":"Sarah Lilian de Lima Silva, Marcos Sousa Leite, Thalita Cristine Ribeiro Lucas Fernandes, Sidinei Kleber Da Silva, Antonio Carlos Brandão De Araújo","doi":"10.24857/rgsa.v17n10-040","DOIUrl":null,"url":null,"abstract":"Purpose: This study aims to determine the economic and technical feasibility of operating and leasing sewage treatment plants through an application that uses mathematical modeling and Machine Learning techniques for process optimization. Theoretical Framework: Efficient operation of sewage treatment plants (STPs) is crucial to ensure water quality, minimize environmental impacts, and optimize costs. This study explores how Machine Learning (ML) can model and optimize sewage treatment processes, adapting to real-time conditions. Method/Design/Approach: The BSM1 model is combined with Machine Learning techniques to create simplified metamodels, enabling optimized results and the development of an application for evaluating economic and technical outcomes. Results and Conclusion: The reduced metamodel successfully reproduced the Simulink model, achieving satisfactory optimization. Research Implications: This research benefits water quality improvement, cost reduction, sustainability, innovation, water resource management, awareness, and resilience to extreme weather events, as well as influencing informed policies. Originality/Value: Efficiency, sustainability, economy, and quality of life are core values in this research, benefiting society, the environment, and the economy.","PeriodicalId":38210,"journal":{"name":"Revista de Gestao Social e Ambiental","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Gestao Social e Ambiental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24857/rgsa.v17n10-040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aims to determine the economic and technical feasibility of operating and leasing sewage treatment plants through an application that uses mathematical modeling and Machine Learning techniques for process optimization. Theoretical Framework: Efficient operation of sewage treatment plants (STPs) is crucial to ensure water quality, minimize environmental impacts, and optimize costs. This study explores how Machine Learning (ML) can model and optimize sewage treatment processes, adapting to real-time conditions. Method/Design/Approach: The BSM1 model is combined with Machine Learning techniques to create simplified metamodels, enabling optimized results and the development of an application for evaluating economic and technical outcomes. Results and Conclusion: The reduced metamodel successfully reproduced the Simulink model, achieving satisfactory optimization. Research Implications: This research benefits water quality improvement, cost reduction, sustainability, innovation, water resource management, awareness, and resilience to extreme weather events, as well as influencing informed policies. Originality/Value: Efficiency, sustainability, economy, and quality of life are core values in this research, benefiting society, the environment, and the economy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习方法的生活和工业污水处理厂优化运行
目的:本研究旨在通过使用数学建模和机器学习技术进行流程优化的应用程序,确定运营和租赁污水处理厂的经济和技术可行性。理论框架:污水处理厂(STPs)的高效运行是确保水质、减少环境影响和优化成本的关键。本研究探讨了机器学习(ML)如何建模和优化污水处理过程,以适应实时条件。方法/设计/方法:BSM1模型与机器学习技术相结合,创建简化的元模型,实现优化结果,并开发用于评估经济和技术成果的应用程序。结果与结论:简化元模型成功地再现了Simulink模型,达到了满意的优化效果。研究意义:本研究有利于改善水质、降低成本、可持续性、创新、水资源管理、对极端天气事件的认识和适应能力,以及影响知情政策。原创性/价值:效率、可持续性、经济性和生活质量是本研究的核心价值,有利于社会、环境和经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista de Gestao Social e Ambiental
Revista de Gestao Social e Ambiental Social Sciences-Geography, Planning and Development
自引率
0.00%
发文量
34
期刊最新文献
Barriers and Drivers to Adoption of Water Reuse In Buildings: A Sociotechnical Analysis in Ceará, Brazil Analysis of the Integrated Basic Sanitation Concession Model Adopted by the Municipality of São Simão, Goiás Evaluation of the Technological Properties of Artificial Agglomerated Stones in Epoxy Resin and Castor Oil-Based Vegetable Polyurethane Matrix Future Scenarios For Land use and Coverage in the Morro do Chapéu State Park/Bahia/Brazil My Home is no Longer a Safe Place for my Emotional Health: Home-Office Work and its Consequences on Emotional Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1