Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment
{"title":"Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment","authors":"Hamidatu Alhassan , Ying Woan Soon , Anwar Usman , Voo Nyuk Yoong","doi":"10.1016/j.wse.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Three-dimensional (3D) porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity. Given their amphiphilic surface, they have a propensity to simultaneously absorb water and oil, which restricts their range of applications. In this study, a reduced graphene oxide and titanium dioxide nanocomposite (rGO/TiO<sub>2</sub>) was used to fabricate an ultrahydrophobic melamine sponge (MS) through interfacial modification using a solution immersion technique. To further modify it, polydimethylsiloxane (PDMS) was grafted onto its surface to establish stronger covalent bonds with the composite. The water contact angle of the sponge (rGO/TiO<sub>2</sub>/PDMS/MS) was 164.2°, which satisfies the condition for ultrahydrophobicity. The evidence of its water repellency was demonstrated by the Cassie–Baxter theory and the lotus leaf effect. As a result of the increased density of rGO/TiO<sub>2</sub>/PDMS/MS, it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption. The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption, while rGO/TiO2/PDMS/MS retained 97%, suggesting good recyclability. Excellent oil and organic solvent recovery (90%–96%) was demonstrated by rGO/TiO<sub>2</sub>/PDMS/MS in oil–water combinations. In a continuous separation system, it achieved a remarkable separation efficiency of 2.4 × 10<sup>6</sup> L/(m<sup>3</sup>·h), and in turbulent emulsion separation, it achieved a demulsification efficiency of 90%–91%. This study provides a practical substitute for massive oil spill cleaning.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 2","pages":"Pages 139-149"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167423702300087X/pdfft?md5=933683b739b29ebd3a690e5b891689d5&pid=1-s2.0-S167423702300087X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167423702300087X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity. Given their amphiphilic surface, they have a propensity to simultaneously absorb water and oil, which restricts their range of applications. In this study, a reduced graphene oxide and titanium dioxide nanocomposite (rGO/TiO2) was used to fabricate an ultrahydrophobic melamine sponge (MS) through interfacial modification using a solution immersion technique. To further modify it, polydimethylsiloxane (PDMS) was grafted onto its surface to establish stronger covalent bonds with the composite. The water contact angle of the sponge (rGO/TiO2/PDMS/MS) was 164.2°, which satisfies the condition for ultrahydrophobicity. The evidence of its water repellency was demonstrated by the Cassie–Baxter theory and the lotus leaf effect. As a result of the increased density of rGO/TiO2/PDMS/MS, it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption. The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption, while rGO/TiO2/PDMS/MS retained 97%, suggesting good recyclability. Excellent oil and organic solvent recovery (90%–96%) was demonstrated by rGO/TiO2/PDMS/MS in oil–water combinations. In a continuous separation system, it achieved a remarkable separation efficiency of 2.4 × 106 L/(m3·h), and in turbulent emulsion separation, it achieved a demulsification efficiency of 90%–91%. This study provides a practical substitute for massive oil spill cleaning.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.