首页 > 最新文献

Water science and engineering最新文献

英文 中文
Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions 包埋在玉米芯-海藻酸钠基质中的金黄色毛霉菌菌丝颗粒从水溶液中高效生物吸附铀(VI)
IF 4 Q1 Engineering Pub Date : 2024-06-01 DOI: 10.1016/j.wse.2024.06.001
Min Li, Bo Liang, Jie-ming Liu, Jin Zhang, Bin Wang, Jie Shang
{"title":"Trichoderma aureoviride hyphal pellets embedded in corncob-sodium alginate matrix for efficient uranium(VI) biosorption from aqueous solutions","authors":"Min Li, Bo Liang, Jie-ming Liu, Jin Zhang, Bin Wang, Jie Shang","doi":"10.1016/j.wse.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.wse.2024.06.001","url":null,"abstract":"","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial community diversity during algal inhibition using slow-release microcapsules of tea polyphenols 使用茶多酚缓释微胶囊抑制藻类生长过程中的微生物群落多样性
IF 4 Q1 Engineering Pub Date : 2024-05-23 DOI: 10.1016/j.wse.2024.05.004
Li-xiao Ni , Yuan-yi Fang , Cun-hao Du , Jia-jia Wang , Cheng-jie Zhu , Chu Xu , Shi-yin Li , Jian Xu , Xu-qing Chen , Hua Su

Harmful algal blooms (HABs) resulting from eutrophication pose a major threat to ecosystems and human health, necessitating effective control measures. Allelochemicals have shown their importance in slowing down algal proliferation due to their proven efficacy and low ecological impacts. In this study, allelopathy tea polyphenols (TPs) and β-cyclodextrin were combined to prepare slow-release algicidal microcapsules, and the diversity of microbial community in the algal inhibition process was analyzed. Results showed that TP slow-release microcapsules had strong algicidal activity. When against Microcystis aeruginosa within 20 d, their constant inhibitory rate was up to 99% compared to the control group. Microbial diversity decreased with an increase in algae density, and the species richness and diversity of algae increased under the stress of TP slow-release microcapsules. The redundancy analysis showed that the environmental factors with impacts on the abundance and diversity of bacterial communities in descending order were dissolved oxygen, pH, and temperature. This study provides a theoretical basis for the application of TP slow-release microcapsules to actual water.

富营养化导致的有害藻华(HABs)对生态系统和人类健康构成重大威胁,必须采取有效的控制措施。等位化学物质因其公认的功效和较低的生态影响,在减缓藻类增殖方面显示出其重要性。本研究将等位基因茶多酚(TPs)与β-环糊精结合,制备了缓释杀藻微胶囊,并分析了抑藻过程中微生物群落的多样性。结果表明,TP 缓释微胶囊具有很强的杀藻活性。与对照组相比,在 20 d 内对铜绿微囊藻的持续抑制率高达 99%。微生物多样性随藻类密度的增加而降低,而在 TP 缓释微胶囊的胁迫下,藻类的物种丰富度和多样性均有所增加。冗余分析表明,对细菌群落丰度和多样性有影响的环境因素依次为溶解氧、pH 值和温度。该研究为 TP 缓释微胶囊在实际水体中的应用提供了理论依据。
{"title":"Microbial community diversity during algal inhibition using slow-release microcapsules of tea polyphenols","authors":"Li-xiao Ni ,&nbsp;Yuan-yi Fang ,&nbsp;Cun-hao Du ,&nbsp;Jia-jia Wang ,&nbsp;Cheng-jie Zhu ,&nbsp;Chu Xu ,&nbsp;Shi-yin Li ,&nbsp;Jian Xu ,&nbsp;Xu-qing Chen ,&nbsp;Hua Su","doi":"10.1016/j.wse.2024.05.004","DOIUrl":"10.1016/j.wse.2024.05.004","url":null,"abstract":"<div><p>Harmful algal blooms (HABs) resulting from eutrophication pose a major threat to ecosystems and human health, necessitating effective control measures. Allelochemicals have shown their importance in slowing down algal proliferation due to their proven efficacy and low ecological impacts. In this study, allelopathy tea polyphenols (TPs) and β-cyclodextrin were combined to prepare slow-release algicidal microcapsules, and the diversity of microbial community in the algal inhibition process was analyzed. Results showed that TP slow-release microcapsules had strong algicidal activity. When against <em>Microcystis aeruginosa</em> within 20 d, their constant inhibitory rate was up to 99% compared to the control group. Microbial diversity decreased with an increase in algae density, and the species richness and diversity of algae increased under the stress of TP slow-release microcapsules. The redundancy analysis showed that the environmental factors with impacts on the abundance and diversity of bacterial communities in descending order were dissolved oxygen, pH, and temperature. This study provides a theoretical basis for the application of TP slow-release microcapsules to actual water.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000528/pdfft?md5=10c451ad88403e633f575865288f70e8&pid=1-s2.0-S1674237024000528-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141133382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of breach parameter models on hazard classification of off-stream reservoirs 破损参数模型对离流水库危险性分类的影响
IF 4 Q1 Engineering Pub Date : 2024-05-01 DOI: 10.1016/j.wse.2024.05.001
Nathalia Silva-Cancino, Fernando Salazar, Ernest Bladé, M. Sanz-Ramos
{"title":"Influence of breach parameter models on hazard classification of off-stream reservoirs","authors":"Nathalia Silva-Cancino, Fernando Salazar, Ernest Bladé, M. Sanz-Ramos","doi":"10.1016/j.wse.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.wse.2024.05.001","url":null,"abstract":"","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment 厌氧活性污泥中磷酸甲酚二苯酯的生物降解:降解特征、微生物群落演替和毒性评估
IF 4 Q1 Engineering Pub Date : 2024-05-01 DOI: 10.1016/j.wse.2024.05.002
Chen-xue Jiang, Ying Li, Chi Yao, Jing Li, Ke Jing, Sui-sui Zhang, Cheng Liu, Lian-fang Zhao
{"title":"Biodegradation of cresyl diphenyl phosphate in anaerobic activated sludge: Degradation characteristics, microbial community succession, and toxicity assessment","authors":"Chen-xue Jiang, Ying Li, Chi Yao, Jing Li, Ke Jing, Sui-sui Zhang, Cheng Liu, Lian-fang Zhao","doi":"10.1016/j.wse.2024.05.002","DOIUrl":"https://doi.org/10.1016/j.wse.2024.05.002","url":null,"abstract":"","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superior decomposition of xenobiotic RB5 dye using three-dimensional electrochemical treatment: Response surface methodology modelling, artificial intelligence, and machine learning-based optimisation approaches 利用三维电化学处理技术优化异生物 RB5 染料的分解:响应面方法建模、人工智能和基于机器学习的优化方法
IF 4 Q1 Engineering Pub Date : 2024-05-01 DOI: 10.1016/j.wse.2024.05.003
V. Ganthavee, A. P. Trzcinski
{"title":"Superior decomposition of xenobiotic RB5 dye using three-dimensional electrochemical treatment: Response surface methodology modelling, artificial intelligence, and machine learning-based optimisation approaches","authors":"V. Ganthavee, A. P. Trzcinski","doi":"10.1016/j.wse.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.wse.2024.05.003","url":null,"abstract":"","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrological responses to permafrost degradation on Tibetan Plateau under changing climate 气候变化下青藏高原冻土退化的水文响应
IF 4 Q1 Engineering Pub Date : 2024-04-15 DOI: 10.1016/j.wse.2024.04.002
Xue-gao Chen , Zhong-bo Yu , Hui Lin , Tong-qing Shen , Peng Jiang

The Tibetan Plateau (TP) has undergone significant warming and humidification in recent years, resulting in rapid permafrost degradation and spatiotemporal variations in hydrological processes, such as subsurface water transport, hydrothermal conversion, and runoff generation. Understanding the mechanisms of hydrological processes in permafrost areas under changing climate is crucial for accurately evaluating hydrological responses on the TP. This study comprehensively discusses the permafrost hydrological processes of the TP under changing climate. Topics include climate conditions and permafrost states, subsurface water transport under freeze–thaw conditions, development of thermokarst lakes and hydrothermal processes, and runoff response during permafrost degradation. This study offers a comprehensive understanding of permafrost changes and their hydrological responses, contributing significantly to water security and sustainable development on the TP.

近年来,青藏高原(TP)经历了显著的变暖和增湿,导致冻土快速退化和水文过程的时空变化,如地下水传输、热液转换和径流生成。了解气候变化下永久冻土区的水文过程机制对于准确评估冻土带的水文响应至关重要。本研究全面讨论了气候变化下的永久冻土水文过程。主题包括气候条件和永久冻土状态、冻融条件下的地下水传输、热钾湖的发展和热液过程以及永久冻土退化过程中的径流响应。这项研究提供了对永久冻土变化及其水文响应的全面了解,对永久冻土带的水安全和可持续发展做出了重大贡献。
{"title":"Hydrological responses to permafrost degradation on Tibetan Plateau under changing climate","authors":"Xue-gao Chen ,&nbsp;Zhong-bo Yu ,&nbsp;Hui Lin ,&nbsp;Tong-qing Shen ,&nbsp;Peng Jiang","doi":"10.1016/j.wse.2024.04.002","DOIUrl":"10.1016/j.wse.2024.04.002","url":null,"abstract":"<div><p>The Tibetan Plateau (TP) has undergone significant warming and humidification in recent years, resulting in rapid permafrost degradation and spatiotemporal variations in hydrological processes, such as subsurface water transport, hydrothermal conversion, and runoff generation. Understanding the mechanisms of hydrological processes in permafrost areas under changing climate is crucial for accurately evaluating hydrological responses on the TP. This study comprehensively discusses the permafrost hydrological processes of the TP under changing climate. Topics include climate conditions and permafrost states, subsurface water transport under freeze–thaw conditions, development of thermokarst lakes and hydrothermal processes, and runoff response during permafrost degradation. This study offers a comprehensive understanding of permafrost changes and their hydrological responses, contributing significantly to water security and sustainable development on the TP.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000486/pdfft?md5=694ccebde1609b67f2443ffe39038146&pid=1-s2.0-S1674237024000486-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140779406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia 气候变化对印度尼西亚大北加龙根地区古邦河流量和极端水文现象的影响
IF 4 Q1 Engineering Pub Date : 2024-03-01 DOI: 10.1016/j.wse.2024.03.005
F. Gradiyanto, Priyo Nugroho Parmantoro, Suharyanto
{"title":"Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia","authors":"F. Gradiyanto, Priyo Nugroho Parmantoro, Suharyanto","doi":"10.1016/j.wse.2024.03.005","DOIUrl":"https://doi.org/10.1016/j.wse.2024.03.005","url":null,"abstract":"","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140401201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Health diagnosis of ultrahigh arch dam performance using heterogeneous spatial panel vector model 利用异质空间面板向量模型对超高拱坝性能进行健康诊断
IF 4 Q1 Engineering Pub Date : 2024-02-28 DOI: 10.1016/j.wse.2024.02.003
Er-feng Zhao , Xin Li , Chong-shi Gu

Currently, more than ten ultrahigh arch dams have been constructed or are being constructed in China. Safety control is essential to long-term operation of these dams. This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams. A comprehensive analysis was conducted, focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China. Subsequently, the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored, including periodicity, convergence, and time-effect characteristics. These findings revealed the governing mechanism of main factors. Furthermore, a heterogeneous spatial panel vector model was developed, considering both common factors and specific factors affecting the safety and performance of arch dams. This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions, introducing a specific effect quantity to characterize local deformation differences. Ultimately, the proposed model was applied to the Xiaowan arch dam, accurately quantifying the spatiotemporal heterogeneity of dam performance. Additionally, the spatiotemporal distribution characteristics of environmental load effects on different parts of the dam were reasonably interpreted. Validation of the model prediction enhances its credibility, leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam. The findings not only enhance the predictive ability and timely control of ultrahigh arch dams’ performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.

目前,中国已建和在建的超高拱坝有十余座。安全控制对这些大坝的长期运行至关重要。本研究采用柔性系数和塑性补能规范来评估拱坝的结构安全。研究进行了全面分析,重点关注了在描述中国小湾拱坝结构行为时传统方法之间的差异。随后,探讨了小湾拱坝测量性能的时空特征,包括周期性、收敛性和时间效应特征。这些发现揭示了主要因素的支配机制。此外,考虑到影响拱坝安全和性能的共性因素和特殊因素,建立了异质性空间面板向量模型。该模型旨在全面说明整个结构和局部区域之间的空间异质性,引入特定效应量来描述局部变形差异。最终,提出的模型被应用于小湾拱坝,准确量化了大坝性能的时空异质性。此外,还合理解释了大坝不同部位环境荷载效应的时空分布特征。对模型预测的验证提高了模型的可信度,从而为小湾大坝未来的长期运行制定了健康诊断标准。研究结果不仅提高了对超高拱坝性能的预测能力和及时控制能力,也为评估工程治理措施的有效性提供了重要依据。
{"title":"Health diagnosis of ultrahigh arch dam performance using heterogeneous spatial panel vector model","authors":"Er-feng Zhao ,&nbsp;Xin Li ,&nbsp;Chong-shi Gu","doi":"10.1016/j.wse.2024.02.003","DOIUrl":"https://doi.org/10.1016/j.wse.2024.02.003","url":null,"abstract":"<div><p>Currently, more than ten ultrahigh arch dams have been constructed or are being constructed in China. Safety control is essential to long-term operation of these dams. This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams. A comprehensive analysis was conducted, focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China. Subsequently, the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored, including periodicity, convergence, and time-effect characteristics. These findings revealed the governing mechanism of main factors. Furthermore, a heterogeneous spatial panel vector model was developed, considering both common factors and specific factors affecting the safety and performance of arch dams. This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions, introducing a specific effect quantity to characterize local deformation differences. Ultimately, the proposed model was applied to the Xiaowan arch dam, accurately quantifying the spatiotemporal heterogeneity of dam performance. Additionally, the spatiotemporal distribution characteristics of environmental load effects on different parts of the dam were reasonably interpreted. Validation of the model prediction enhances its credibility, leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam. The findings not only enhance the predictive ability and timely control of ultrahigh arch dams’ performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000255/pdfft?md5=4f4632dcc8091681a18a89d50976098f&pid=1-s2.0-S1674237024000255-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Big data-driven water research towards metaverse 大数据驱动的水研究迈向元宇宙
IF 4 Q1 Engineering Pub Date : 2024-02-13 DOI: 10.1016/j.wse.2024.02.001
Minori Uchimiya

Although big data is publicly available on water quality parameters, virtual simulation has not yet been adequately adapted in environmental chemistry research. Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic (e.g., climate impact and water-related environmental catastrophe) or difficult to design and monitor in a real time (e.g., pollutant and nutrient cycles in estuaries, soils, and sediments). Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios, including drinking water contamination.

虽然有关水质参数的大数据已经公开,但虚拟仿真尚未充分应用于环境化学研究。数字孪生不同于传统的地理空间建模方法,在系统的实验室/现场实验不现实(如气候影响和与水有关的环境灾难)或难以设计和实时监测(如河口、土壤和沉积物中的污染物和营养物循环)时特别有用。以数据为驱动的水研究可以针对不同的环境情景(包括饮用水污染)实现早期预警和灾难准备模拟。
{"title":"Big data-driven water research towards metaverse","authors":"Minori Uchimiya","doi":"10.1016/j.wse.2024.02.001","DOIUrl":"10.1016/j.wse.2024.02.001","url":null,"abstract":"<div><p>Although big data is publicly available on water quality parameters, virtual simulation has not yet been adequately adapted in environmental chemistry research. Digital twin is different from conventional geospatial modeling approaches and is particularly useful when systematic laboratory/field experiment is not realistic (e.g., climate impact and water-related environmental catastrophe) or difficult to design and monitor in a real time (e.g., pollutant and nutrient cycles in estuaries, soils, and sediments). Data-driven water research could realize early warning and disaster readiness simulations for diverse environmental scenarios, including drinking water contamination.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237024000231/pdfft?md5=f7ae9790a7e619b1139af1bd7ae60eda&pid=1-s2.0-S1674237024000231-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139882344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Big data-driven water research towards metaverse 大数据驱动的水研究迈向元宇宙
IF 4 Q1 Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.wse.2024.02.001
Minori Uchimiya
{"title":"Big data-driven water research towards metaverse","authors":"Minori Uchimiya","doi":"10.1016/j.wse.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.wse.2024.02.001","url":null,"abstract":"","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139822510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water science and engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1