In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-09-28 DOI:10.1016/j.jechem.2023.09.020
Huanhui Chen , Xing Cao , Moujie Huang , Xiangzhong Ren , Yubin Zhao , Liang Yu , Ya Liu , Liubiao Zhong , Yejun Qiu
{"title":"In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries","authors":"Huanhui Chen ,&nbsp;Xing Cao ,&nbsp;Moujie Huang ,&nbsp;Xiangzhong Ren ,&nbsp;Yubin Zhao ,&nbsp;Liang Yu ,&nbsp;Ya Liu ,&nbsp;Liubiao Zhong ,&nbsp;Yejun Qiu","doi":"10.1016/j.jechem.2023.09.020","DOIUrl":null,"url":null,"abstract":"<div><p>The function of solid electrolytes and the composition of solid electrolyte interphase (SEI) are highly significant for inhibiting the growth of Li dendrites. Herein, we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li<sub>0.33</sub>La<sub>0.557</sub>TiO<sub>3</sub> (LLTO)-based solid-state batteries. Specifically, a functional SEI enriched with LiF/Li<sub>3</sub>PO<sub>4</sub> is formed by in-situ electrochemical conversion, which is greatly beneficial to improving interface compatibility and enhancing ion transport. While the polarized dielectric BaTiO<sub>3</sub>-polyamic acid (BTO-PAA, BP) film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition. As expected, the resulting electrolyte offers considerable ionic conductivity at room temperature (4.3 × 10<sup>−4</sup> S cm<sup>−1</sup>) and appreciable electrochemical decomposition voltage (5.23 V) after electrochemical passivation. For Li-LiFePO<sub>4</sub> batteries, it shows a high specific capacity of 153 mA h g<sup>−1</sup> at 0.2 C after 100 cycles and a long-term durability of 115 mA h g<sup>−1</sup> at 1.0 C after 800 cycles. Additionally, a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm<sup>−2</sup>. The stabilization mechanisms are elucidated by ex-situ XRD, ex-situ XPS, and ex-situ FTIR techniques, and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance. The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 282-292"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005351","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The function of solid electrolytes and the composition of solid electrolyte interphase (SEI) are highly significant for inhibiting the growth of Li dendrites. Herein, we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li0.33La0.557TiO3 (LLTO)-based solid-state batteries. Specifically, a functional SEI enriched with LiF/Li3PO4 is formed by in-situ electrochemical conversion, which is greatly beneficial to improving interface compatibility and enhancing ion transport. While the polarized dielectric BaTiO3-polyamic acid (BTO-PAA, BP) film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition. As expected, the resulting electrolyte offers considerable ionic conductivity at room temperature (4.3 × 10−4 S cm−1) and appreciable electrochemical decomposition voltage (5.23 V) after electrochemical passivation. For Li-LiFePO4 batteries, it shows a high specific capacity of 153 mA h g−1 at 0.2 C after 100 cycles and a long-term durability of 115 mA h g−1 at 1.0 C after 800 cycles. Additionally, a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm−2. The stabilization mechanisms are elucidated by ex-situ XRD, ex-situ XPS, and ex-situ FTIR techniques, and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance. The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位界面钝化与自适应协同稳定全固态锂金属电池
固体电解质的功能和固体电解质间相(SEI)的组成对抑制锂枝晶的生长具有重要意义。在此,我们报告了一种结合自适应策略的原位界面钝化方法来增强Li0.33La0.557TiO3 (LLTO)基固态电池。其中,原位电化学转化形成了富含LiF/Li3PO4的功能性SEI,极大地有利于改善界面相容性和增强离子输运。而电介质batio3 -聚酰胺酸(BTO-PAA, BP)极化膜则大大改善了锂离子迁移动力学,使锂离子沉积均匀化。正如预期的那样,所得到的电解质在室温下具有可观的离子电导率(4.3 × 10−4 S cm−1)和电化学钝化后可观的电化学分解电压(5.23 V)。对于Li-LiFePO4电池,在0.2℃下循环100次后,其比容量为153 mA h g−1,在1.0℃下循环800次后,其长期耐久性为115 mA h g−1。此外,在0.5 mA cm−2下,可以实现900小时以上的稳定的锂电镀/剥离。采用非原位XRD、非原位XPS和非原位FTIR技术对其稳定机理进行了分析,结果表明,结合极化效应的界面钝化是提高电化学性能的有效策略。本研究对固态锂电池电极-电解质界面的动态调节提供了更深入的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1