Development, Optimization, and Validation of Radium-226 Measurement in Oyster, a Sentinel Organism by Mass Spectrometry

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL Separations Pub Date : 2023-10-02 DOI:10.3390/separations10100529
Alexandre Landry, Samuel Banville, Olivier Clarisse
{"title":"Development, Optimization, and Validation of Radium-226 Measurement in Oyster, a Sentinel Organism by Mass Spectrometry","authors":"Alexandre Landry, Samuel Banville, Olivier Clarisse","doi":"10.3390/separations10100529","DOIUrl":null,"url":null,"abstract":"Radium-226 (226Ra) measurement in living organisms, such as the American oyster (Crassostrea virginica), is an analytical challenge: the matrix complexity and the extremely low Ra levels require a purification/preconcentration step prior to its quantification. In this study, 5 g of dry oyster soft tissues and 1.6 g of shell were both mineralized, preconcentrated on an AG50W-X8 and a strontium-specific resin, and measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The volumes of digestate used in the method for both matrices were optimized to reach a high preconcentration factor without any risk of oversaturating the columns. Out of the 50 mL of digestates, 48 mL and 2.5 mL were determined as optimal volumes for soft tissues and shell, respectively. To obtain a higher preconcentration factor and a lower limit of quantification (LOQ) for shell samples, three aliquots of 2.5 mL digestate were run on three different sets of resins and, ultimately, combined for Ra analysis using ICP-MS. LOQs of 7.7 and 0.3 fg/g (260 and 11 µBq/g) were achieved for the oyster shell and soft tissues, respectively. The new protocols were applied on relevant samples: oyster soft tissues and shell from New Brunswick, Canada, and different types of reference materials, such as IAEA-470, oyster soft tissue and IAEA-A-12, and animal bones. 226Ra recovery of 105 ± 3% (n = 6) was achieved for IAEA-A-12 (animal bones), the closest available reference material to shell with a recommended value for 226Ra. Resin performances were investigated using 226Ra standard solution and real samples: each set of columns could be used more than 100 times without any significant reduction in Ra preconcentration efficiency. Although the method proposed and validated in this work was developed for oysters, it could easily be applied to other matrices by adjusting the volume of digestate run on the resins to avoid their oversaturation.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"96 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations10100529","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Radium-226 (226Ra) measurement in living organisms, such as the American oyster (Crassostrea virginica), is an analytical challenge: the matrix complexity and the extremely low Ra levels require a purification/preconcentration step prior to its quantification. In this study, 5 g of dry oyster soft tissues and 1.6 g of shell were both mineralized, preconcentrated on an AG50W-X8 and a strontium-specific resin, and measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The volumes of digestate used in the method for both matrices were optimized to reach a high preconcentration factor without any risk of oversaturating the columns. Out of the 50 mL of digestates, 48 mL and 2.5 mL were determined as optimal volumes for soft tissues and shell, respectively. To obtain a higher preconcentration factor and a lower limit of quantification (LOQ) for shell samples, three aliquots of 2.5 mL digestate were run on three different sets of resins and, ultimately, combined for Ra analysis using ICP-MS. LOQs of 7.7 and 0.3 fg/g (260 and 11 µBq/g) were achieved for the oyster shell and soft tissues, respectively. The new protocols were applied on relevant samples: oyster soft tissues and shell from New Brunswick, Canada, and different types of reference materials, such as IAEA-470, oyster soft tissue and IAEA-A-12, and animal bones. 226Ra recovery of 105 ± 3% (n = 6) was achieved for IAEA-A-12 (animal bones), the closest available reference material to shell with a recommended value for 226Ra. Resin performances were investigated using 226Ra standard solution and real samples: each set of columns could be used more than 100 times without any significant reduction in Ra preconcentration efficiency. Although the method proposed and validated in this work was developed for oysters, it could easily be applied to other matrices by adjusting the volume of digestate run on the resins to avoid their oversaturation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牡蛎中镭-226的质谱测定方法的建立、优化和验证
在活生物体(如美洲牡蛎)中测量镭-226 (226Ra)是一项分析挑战:基质复杂性和极低的Ra水平需要在量化之前进行纯化/预浓缩步骤。本研究将5 g干牡蛎软组织和1.6 g牡蛎壳矿化,在AG50W-X8和锶特异性树脂上预浓缩,并使用电感耦合等离子体质谱(ICP-MS)进行测量。该方法对两种基质的消化液体积进行了优化,以达到较高的预富集系数,而不存在柱过饱和的风险。在50 mL的消化液中,48 mL和2.5 mL分别被确定为软组织和贝壳的最佳体积。为了获得更高的预富集系数和壳样品的定量下限(LOQ),将3个等分2.5 mL消化液在3组不同的树脂上运行,并最终结合使用ICP-MS进行Ra分析。牡蛎壳和软组织的loq分别为7.7和0.3 fg/g(260和11µBq/g)。新方案应用于相关样品:来自加拿大新不伦瑞克省的牡蛎软组织和壳,以及不同类型的参考物质,如IAEA-470,牡蛎软组织和iaea -12,以及动物骨骼。原子能- a -12(动物骨骼)的226Ra回收率为105±3% (n = 6),这是与贝壳最接近的参考材料,具有226Ra的推荐值。采用226Ra标准溶液和实际样品考察树脂的性能:每组色谱柱可使用100次以上,而Ra的预富集效率没有明显降低。虽然在这项工作中提出和验证的方法是为牡蛎开发的,但它可以很容易地应用于其他基质,通过调整树脂上消化液的体积来避免它们的过饱和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
期刊最新文献
Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction Central European Group for Separation Sciences (CEGSS)—Brief History and Memoirs on the Creation and Activity Effect of Fly Ash on the Mass Transfer Performance of CO2 Removal Using MEA and DEA Solutions in a Packed Tower Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1