Connections between two classes of estimators for single‐index models

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Neerlandica Pub Date : 2023-10-13 DOI:10.1111/stan.12329
Weichao Yang, Xu Guo, Niwen Zhou, Changliang Zou
{"title":"Connections between two classes of estimators for single‐index models","authors":"Weichao Yang, Xu Guo, Niwen Zhou, Changliang Zou","doi":"10.1111/stan.12329","DOIUrl":null,"url":null,"abstract":"Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, [[spiapacite]]bib1[[/spiapacite]] proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures. This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"127 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12329","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, [[spiapacite]]bib1[[/spiapacite]] proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures. This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单指标模型的两类估计量之间的联系
单指标模型是一种非常流行且功能强大的半参数模型。作为对最大秩相关估计器的改进,[[spiapacite]]bib1[[/spiapacite]]提出了线性化最大秩相关估计器。我们证明了这个估计量与单指标模型的分布变换最小二乘估计量有一些有趣的联系。我们还提出了一个重标化的分布变换最小二乘估计量,当响应分布绝对连续时,它在数学上等同于线性化的最大秩相关估计量。尽管有一些重要的联系,但这两种评估过程在动机、解释和应用方面是不同的。我们将讨论这两种估计过程之间的一些差异。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
期刊最新文献
On global robustness of an adversarial risk analysis solution Heterogeneous dense subhypergraph detection General adapted‐threshold monitoring in discrete environments and rules for imbalanced classes VC‐PCR: A prediction method based on variable selection and clustering Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1