{"title":"Connections between two classes of estimators for single‐index models","authors":"Weichao Yang, Xu Guo, Niwen Zhou, Changliang Zou","doi":"10.1111/stan.12329","DOIUrl":null,"url":null,"abstract":"Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, [[spiapacite]]bib1[[/spiapacite]] proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures. This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"127 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12329","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, [[spiapacite]]bib1[[/spiapacite]] proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures. This article is protected by copyright. All rights reserved.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.