Rebecca Marion, Johannes Lederer, Bernadette Goevarts, Rainer von Sachs
{"title":"VC‐PCR: A prediction method based on variable selection and clustering","authors":"Rebecca Marion, Johannes Lederer, Bernadette Goevarts, Rainer von Sachs","doi":"10.1111/stan.12358","DOIUrl":null,"url":null,"abstract":"Sparse linear prediction methods suffer from decreased prediction accuracy when the predictor variables have cluster structure (e.g., highly correlated groups of variables). To improve prediction accuracy, various methods have been proposed to identify variable clusters from the data and integrate cluster information into a sparse modeling process. But none of these methods achieve satisfactory performance for prediction, variable selection and variable clustering performed simultaneously. This paper presents Variable Cluster Principal Component Regression (VC‐PCR), a prediction method that uses variable selection and variable clustering in order to solve this problem. Experiments with real and simulated data demonstrate that, compared to competitor methods, VC‐PCR is the only method that achieves simultaneously good prediction, variable selection, and clustering performance when cluster structure is present.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12358","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse linear prediction methods suffer from decreased prediction accuracy when the predictor variables have cluster structure (e.g., highly correlated groups of variables). To improve prediction accuracy, various methods have been proposed to identify variable clusters from the data and integrate cluster information into a sparse modeling process. But none of these methods achieve satisfactory performance for prediction, variable selection and variable clustering performed simultaneously. This paper presents Variable Cluster Principal Component Regression (VC‐PCR), a prediction method that uses variable selection and variable clustering in order to solve this problem. Experiments with real and simulated data demonstrate that, compared to competitor methods, VC‐PCR is the only method that achieves simultaneously good prediction, variable selection, and clustering performance when cluster structure is present.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.