Recent advances in cancer-on-a-chip tissue models to dissect the tumour microenvironment

Med-X Pub Date : 2023-10-13 DOI:10.1007/s44258-023-00011-1
Kimberly Seaman, Yu Sun, Lidan You
{"title":"Recent advances in cancer-on-a-chip tissue models to dissect the tumour microenvironment","authors":"Kimberly Seaman, Yu Sun, Lidan You","doi":"10.1007/s44258-023-00011-1","DOIUrl":null,"url":null,"abstract":"Abstract Three-dimensional cancer-on-a-chip tissue models aim to replicate the key hallmarks of the tumour microenvironment and allow for the study of dynamic interactions that occur during tumour progression. Recently, complex cancer-on-a-chip models incorporating multiple cell types and biomimetic extracellular matrices have been developed. These models have generated new research directions in engineering and medicine by allowing for the real-time observation of cancer-host cell interactions in a physiologically relevant microenvironment. However, these cancer-on-a-chip models have yet to overcome limitations including the complexity of device manufacturing, the selection of optimal materials for preclinical drug screening studies, long-term microfluidic cell culture as well as associated challenges, and the technical robustness or difficulty in the use of these microfluidic platforms. In this review, an overview of the tumour microenvironment, its unique characteristics, and the recent advances of cancer-on-a-chip models that recapitulate native features of the tumour microenvironment are presented. The current challenges that cancer-on-a-chip models face and the future directions of research that are expected to be seen are also discussed. Graphical Abstract","PeriodicalId":74169,"journal":{"name":"Med-X","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Med-X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44258-023-00011-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Three-dimensional cancer-on-a-chip tissue models aim to replicate the key hallmarks of the tumour microenvironment and allow for the study of dynamic interactions that occur during tumour progression. Recently, complex cancer-on-a-chip models incorporating multiple cell types and biomimetic extracellular matrices have been developed. These models have generated new research directions in engineering and medicine by allowing for the real-time observation of cancer-host cell interactions in a physiologically relevant microenvironment. However, these cancer-on-a-chip models have yet to overcome limitations including the complexity of device manufacturing, the selection of optimal materials for preclinical drug screening studies, long-term microfluidic cell culture as well as associated challenges, and the technical robustness or difficulty in the use of these microfluidic platforms. In this review, an overview of the tumour microenvironment, its unique characteristics, and the recent advances of cancer-on-a-chip models that recapitulate native features of the tumour microenvironment are presented. The current challenges that cancer-on-a-chip models face and the future directions of research that are expected to be seen are also discussed. Graphical Abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肿瘤芯片组织模型解剖肿瘤微环境的最新进展
三维肿瘤芯片组织模型旨在复制肿瘤微环境的关键特征,并允许研究肿瘤进展过程中发生的动态相互作用。近年来,结合多种细胞类型和仿生细胞外基质的复杂肿瘤芯片模型得到了发展。这些模型通过允许在生理相关微环境中实时观察癌症-宿主细胞相互作用,在工程和医学上产生了新的研究方向。然而,这些芯片上的癌症模型还需要克服一些限制,包括设备制造的复杂性、临床前药物筛选研究的最佳材料选择、长期微流控细胞培养以及相关挑战,以及使用这些微流控平台的技术稳健性或难度。在这篇综述中,概述了肿瘤微环境,其独特的特征,以及癌症芯片模型的最新进展,这些模型概括了肿瘤微环境的天然特征。本文还讨论了目前芯片上癌症模型面临的挑战以及未来的研究方向。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategic reuse of rapid antigen tests for coagulation status assessment: an integrated machine learning approach Atomic force microscopy in the characterization and clinical evaluation of neurological disorders: current and emerging technologies Biomaterials-enabled electrical stimulation for tissue healing and regeneration Advancement in modulation of brain extracellular space and unlocking its potential for intervention of neurological diseases Shear wave ultrasound elastography for estimating cartilage stiffness: implications for early detection of osteoarthritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1