Investigating and Studying the Modifications of Nano and Micro-sized Amorphous Materials Under the Influence of a High Energy Radiation

Mohammed F. Sabri
{"title":"Investigating and Studying the Modifications of Nano and Micro-sized Amorphous Materials Under the Influence of a High Energy Radiation","authors":"Mohammed F. Sabri","doi":"10.14500/aro.11290","DOIUrl":null,"url":null,"abstract":"This research explored the behavior of glass when bombarded by high-energy radiation, especially electron beams inside transmission electron microscopy (TEM). Six types of glasses are investigated under e-beam. The work is conducted using three types of TEMs of energies of 120, 200, and 300 keV. The findings show that these microscopies have a significant impact on the glass, as various observations were documented. Using a wide electron beam, morphology changes combined with bubble formation are observed in the glass. These changes are rounding and smoothening of glass edges and surfaces. In addition, the findings show that there is no material loss due to irradiation as confirmed by the energy dispersive X-ray spectroscopy. The results also show that high silica glass is very sensitive, while high boron glass is found to be less sensitive to irradiation. Using a smaller size electron beam, on the other hand, resulted in the fabrication of a nanoring/nanocrater in glass. The possible applications of this research can be in the protection and packaging of three-dimensional electronic equipment and nanoscale pattern formation through roughening of the external glass contour through phase separation and the opposite through local changing of a part of the glass through the pseudo-melting and the stability of loaded and un-loaded glasses to the irradiation. Furthermore, by generating a nanoring or a nanocrater through e-beam, the lithography process is successfully performed, as the effect of the electron beam is solely at the irradiation region, while the regions outside the e-beam remain unaffected","PeriodicalId":8665,"journal":{"name":"ARO. The Scientific Journal of Koya University","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO. The Scientific Journal of Koya University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.11290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research explored the behavior of glass when bombarded by high-energy radiation, especially electron beams inside transmission electron microscopy (TEM). Six types of glasses are investigated under e-beam. The work is conducted using three types of TEMs of energies of 120, 200, and 300 keV. The findings show that these microscopies have a significant impact on the glass, as various observations were documented. Using a wide electron beam, morphology changes combined with bubble formation are observed in the glass. These changes are rounding and smoothening of glass edges and surfaces. In addition, the findings show that there is no material loss due to irradiation as confirmed by the energy dispersive X-ray spectroscopy. The results also show that high silica glass is very sensitive, while high boron glass is found to be less sensitive to irradiation. Using a smaller size electron beam, on the other hand, resulted in the fabrication of a nanoring/nanocrater in glass. The possible applications of this research can be in the protection and packaging of three-dimensional electronic equipment and nanoscale pattern formation through roughening of the external glass contour through phase separation and the opposite through local changing of a part of the glass through the pseudo-melting and the stability of loaded and un-loaded glasses to the irradiation. Furthermore, by generating a nanoring or a nanocrater through e-beam, the lithography process is successfully performed, as the effect of the electron beam is solely at the irradiation region, while the regions outside the e-beam remain unaffected
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能辐射作用下纳米和微米非晶材料的改性研究
本研究探讨了玻璃在高能辐射,特别是电子束轰击下的行为。研究了电子束作用下的六种玻璃。这项工作是用三种能量分别为120、200和300 keV的tem进行的。研究结果表明,这些显微镜对玻璃有重大影响,正如各种观察记录的那样。使用宽电子束,在玻璃中观察到形貌变化和气泡形成。这些变化是圆形和光滑的玻璃边缘和表面。此外,能量色散x射线光谱学证实了辐照没有造成物质损失。结果还表明,高硅玻璃对辐照非常敏感,而高硼玻璃对辐照的敏感性较低。另一方面,使用更小尺寸的电子束,可以在玻璃中制造纳米环/纳米圆。本研究可能的应用领域有:三维电子设备的保护和封装、通过相分离使外部玻璃轮廓变粗而形成纳米尺度的图案、通过伪熔化使部分玻璃局部改变而形成纳米尺度的图案,以及加载和未加载玻璃对辐照的稳定性。此外,通过电子束产生纳米环或纳米圆,光刻过程成功进行,因为电子束的影响仅在照射区域,而电子束以外的区域不受影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Size Reduction and Harmonics Suppression in Microwave Power Dividers Investigating the Role of Metoclopramide and Hyoscine-N-Butyl Bromide in Colon Motility The Local Anesthetic Activity of Lavandula angustifolia and Eugenia caryophyllata Essential Oils Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques Design and Study of a Nanocavity-based One-dimensional Photonic Crystal for Potential Applications in Refractive Index Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1