Deep Learning-Powered Beamforming for 5G Massive MIMO Systems

Ridha Ilyas Bendjillali, Mohammed Sofiane Bendelhoum, Ali Abderrazak Tadjeddine, Miloud Kamline
{"title":"Deep Learning-Powered Beamforming for 5G Massive MIMO Systems","authors":"Ridha Ilyas Bendjillali, Mohammed Sofiane Bendelhoum, Ali Abderrazak Tadjeddine, Miloud Kamline","doi":"10.26636/jtit.2023.4.1332","DOIUrl":null,"url":null,"abstract":"In this study, a ResNeSt-based deep learning approach to beamforming for 5G massive multiple-input multiple-output (MIMO) systems is presented. The ResNeSt-based deep learning method is harnessed to simplify and optimize the beamforming process, consequently improving performance and efficiency of 5G and beyond communication networks. A study of beamforming capabilities has revealed potential to maximize channel capacity while minimizing interference, thus eliminating inherent limitations of the traditional methods. The proposed model shows superior adaptability to dynamic channel conditions and outperforms traditional techniques across various interference scenarios.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"78 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2023.4.1332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a ResNeSt-based deep learning approach to beamforming for 5G massive multiple-input multiple-output (MIMO) systems is presented. The ResNeSt-based deep learning method is harnessed to simplify and optimize the beamforming process, consequently improving performance and efficiency of 5G and beyond communication networks. A study of beamforming capabilities has revealed potential to maximize channel capacity while minimizing interference, thus eliminating inherent limitations of the traditional methods. The proposed model shows superior adaptability to dynamic channel conditions and outperforms traditional techniques across various interference scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G大规模MIMO系统的深度学习驱动波束形成
在本研究中,提出了一种基于resnest的深度学习方法,用于5G大规模多输入多输出(MIMO)系统的波束形成。基于resnest的深度学习方法被用来简化和优化波束形成过程,从而提高5G及以后通信网络的性能和效率。对波束形成能力的研究揭示了在最小化干扰的同时最大化信道容量的潜力,从而消除了传统方法的固有局限性。该模型对动态信道条件具有良好的适应性,在各种干扰情况下优于传统技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
期刊最新文献
High-isolation Quad-port MIMO Antenna for 5G Applications A Generalized Learning Approach to Deep Neural Networks Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs Analyzing Performance of THz Band Graphene-Based MIMO Antenna for 6G Applications Multiprobe Planar Near-field Range Antenna Measurement System with Improved Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1