A Generalized Learning Approach to Deep Neural Networks

F. Ponti, Fabrizio Frezza, P. Simeoni, Raffaele Parisi
{"title":"A Generalized Learning Approach to Deep Neural Networks","authors":"F. Ponti, Fabrizio Frezza, P. Simeoni, Raffaele Parisi","doi":"10.26636/jtit.2024.3.1454","DOIUrl":null,"url":null,"abstract":"Optimization of machine learning architectures is essential in determining the efficacy and the applicability of any neural architecture to real world problems. In this work a generalized Newton's method (GNM) is presented as a powerful approach to learning in deep neural networks (DNN). This technique was compared to two popular approaches, namely the stochastic gradient descent (SGD) and the Adam algorithm, in two popular classification tasks. The performance of the proposed approach confirmed it as an attractive alternative to state-of-the-art first order solutions. Due to the good results presented in the case of shallow DNN, in the last part of the article an hybrid optimization method is presented. This method consists in combining two optimization algorithms, i.e. GNM and Adam or GNM and SGD, during the training phase within the layers of the neural network. This configuration aims to benefit from the strengths of both first- and second-order algorithms. In this case a convolutional neural network is considered and its parameters are updated with a different optimization algorithm. Also in this case, the hybrid approach returns the best performance with respect to the first order algorithms.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.3.1454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Optimization of machine learning architectures is essential in determining the efficacy and the applicability of any neural architecture to real world problems. In this work a generalized Newton's method (GNM) is presented as a powerful approach to learning in deep neural networks (DNN). This technique was compared to two popular approaches, namely the stochastic gradient descent (SGD) and the Adam algorithm, in two popular classification tasks. The performance of the proposed approach confirmed it as an attractive alternative to state-of-the-art first order solutions. Due to the good results presented in the case of shallow DNN, in the last part of the article an hybrid optimization method is presented. This method consists in combining two optimization algorithms, i.e. GNM and Adam or GNM and SGD, during the training phase within the layers of the neural network. This configuration aims to benefit from the strengths of both first- and second-order algorithms. In this case a convolutional neural network is considered and its parameters are updated with a different optimization algorithm. Also in this case, the hybrid approach returns the best performance with respect to the first order algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度神经网络的广义学习方法
机器学习架构的优化对于确定任何神经架构在实际问题中的有效性和适用性至关重要。本研究提出了广义牛顿法(GNM),作为深度神经网络(DNN)学习的有力方法。在两个流行的分类任务中,该技术与随机梯度下降法(SGD)和亚当算法这两种流行方法进行了比较。所提方法的性能证实,它是最先进的一阶解决方案的一个有吸引力的替代方案。由于在浅层 DNN 案例中取得了良好的结果,文章的最后一部分介绍了一种混合优化方法。这种方法是在神经网络各层的训练阶段结合两种优化算法,即 GNM 和 Adam 或 GNM 和 SGD。这种配置旨在从一阶和二阶算法的优势中获益。在这种情况下,考虑的是卷积神经网络,并采用不同的优化算法更新其参数。同样在这种情况下,混合方法比一阶算法的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
期刊最新文献
High-isolation Quad-port MIMO Antenna for 5G Applications A Generalized Learning Approach to Deep Neural Networks Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs Analyzing Performance of THz Band Graphene-Based MIMO Antenna for 6G Applications Multiprobe Planar Near-field Range Antenna Measurement System with Improved Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1