Characterization of Voltage Generation Obtained from Water Droplets on a Taro Leaf (Colocasia esculenta L) Surface

Ena Marlina, Akhmad Faruq Alhikami, Metty Trisna Negara, Sekar Rahima Sahwahita, Mochammad Basjir
{"title":"Characterization of Voltage Generation Obtained from Water Droplets on a Taro Leaf (Colocasia esculenta L) Surface","authors":"Ena Marlina, Akhmad Faruq Alhikami, Metty Trisna Negara, Sekar Rahima Sahwahita, Mochammad Basjir","doi":"10.25299/jeee.2023.12916","DOIUrl":null,"url":null,"abstract":"Voltage generation was obtained using a water droplet characterization on a taro (Colocasia esculenta L) leaf surface. This method relies on the superhydrophobic effect from the contact angle between the water droplet and the taro leaf’s surface allowing electron jumping and voltage generation. Water droplets were dropped on the top of taro leaf surface equipped with aluminum foil underneath as an electrode. The voltage was measured at various slope angles of 20°, 40° and 60° in a real-time basis. A digital camera was used to capture the droplet movement and characterization. It is found that the taro leaf has a surface morphology of nano-sized pointed pillars which created a superhydrophobic field. The energy generation was primarily obtained from the electron jump which was caused by the surface tension of the nano-stalagmite structure assisted by the minerals contained in the taro leaf surface. The results reported that the smaller the droplet radius (the smaller the droplet surface area), the greater the droplet surface tension and the greater the voltage generation. Furthermore, the highest voltage generation was obtained 321.2 mV at 20°-degree angle of slopes.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jeee.2023.12916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage generation was obtained using a water droplet characterization on a taro (Colocasia esculenta L) leaf surface. This method relies on the superhydrophobic effect from the contact angle between the water droplet and the taro leaf’s surface allowing electron jumping and voltage generation. Water droplets were dropped on the top of taro leaf surface equipped with aluminum foil underneath as an electrode. The voltage was measured at various slope angles of 20°, 40° and 60° in a real-time basis. A digital camera was used to capture the droplet movement and characterization. It is found that the taro leaf has a surface morphology of nano-sized pointed pillars which created a superhydrophobic field. The energy generation was primarily obtained from the electron jump which was caused by the surface tension of the nano-stalagmite structure assisted by the minerals contained in the taro leaf surface. The results reported that the smaller the droplet radius (the smaller the droplet surface area), the greater the droplet surface tension and the greater the voltage generation. Furthermore, the highest voltage generation was obtained 321.2 mV at 20°-degree angle of slopes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芋头叶片表面水滴产生电压的表征
利用芋头(Colocasia esculenta L)叶片表面的水滴特性获得了电压的产生。这种方法依赖于水滴与芋头叶子表面的接触角产生的超疏水效应,从而允许电子跳跃和电压产生。将水滴滴在芋头叶片表面的顶部,下面有铝箔作为电极。实时测量20°、40°和60°不同坡度下的电压。用数码相机捕捉液滴的运动和表征。发现芋头叶具有纳米尖柱的表面形态,形成了超疏水场。能量的产生主要来自于电子跳跃,电子跳跃是由纳米石笋结构的表面张力引起的,并辅之以芋头叶表面所含的矿物质。结果表明,液滴半径越小(液滴表面积越小),液滴表面张力越大,产生的电压也越大。当坡角为20°时,产生的最高电压为321.2 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
APPLICATION OF PSO-LSSVM IN PREDICTION AND ANALYSIS OF SLOW DRILLING (RATE OF PENETRATION) EVALUATION OF CONTINUOUS AND WATER ALTERNATING GAS (WAG) CO2 INJECTION ON X FIELD RECOVERY FACTOR The Effect of Different Gas Water Ratio on Recovery Factor and CO2 Storage Capacity in Water Alternating Gas Injection. A Case Study: “V” Field Development, North Sea Oil Formation Volume Factor Prediction Using Artificial Neural Network: A Case Study of Niger Delta Crudes Fracturing Fluid Optimization in Limestone Formation Using Guar Gum Crosslinked Fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1