{"title":"Damage assessment of laminated composites using unsupervised autonomous features","authors":"Asif Khan, Heung Soo Kim","doi":"10.1177/08927057231208970","DOIUrl":null,"url":null,"abstract":"This article proposes a framework for the damage assessment of and effect of temperature variations in laminated composites using Lamb waves and unsupervised autonomous features. A network of piezoelectric transducers is employed to generate data for 18 health states of a laminated composite plate. The data is processed with sparse autoencoder (SAE) for unsupervised autonomous features. The discriminative capabilities of the extracted features are confirmed by processing the feature space in the supervised and unsupervised frameworks of machine learning. The confusion matrices of supervised learning provided physical insights into the problem. The feature space was also visualized in two dimensions in an unsupervised manner through principal component analysis (PCA), which revealed physically consistent results for the effect of temperature variations, damage of different severity levels, and the undamaged paths between the actuator and sensors. The healthy state data and information on the paths between the actuator and sensors was processed via SAE for damage localization. The proposed approach can be employed for the autonomous assessment of composite structures for the presence of damage and variations of operating temperatures while using both supervised and unsupervised machine learning algorithms.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"204 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08927057231208970","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes a framework for the damage assessment of and effect of temperature variations in laminated composites using Lamb waves and unsupervised autonomous features. A network of piezoelectric transducers is employed to generate data for 18 health states of a laminated composite plate. The data is processed with sparse autoencoder (SAE) for unsupervised autonomous features. The discriminative capabilities of the extracted features are confirmed by processing the feature space in the supervised and unsupervised frameworks of machine learning. The confusion matrices of supervised learning provided physical insights into the problem. The feature space was also visualized in two dimensions in an unsupervised manner through principal component analysis (PCA), which revealed physically consistent results for the effect of temperature variations, damage of different severity levels, and the undamaged paths between the actuator and sensors. The healthy state data and information on the paths between the actuator and sensors was processed via SAE for damage localization. The proposed approach can be employed for the autonomous assessment of composite structures for the presence of damage and variations of operating temperatures while using both supervised and unsupervised machine learning algorithms.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).