{"title":"The synergistic effect of the multiple parameters of vibro-impact nonlinear energy sink","authors":"Petro Lizunov, Olga Pogorelova, Tetiana Postnikov","doi":"10.59400/jam.v1i3.199","DOIUrl":null,"url":null,"abstract":"This article studies the dynamics and efficiency of a vibro-impact damper (single-sided vibro-impact nonlinear energy sink—SSVI NES) depending on the exciting force parameters. The damper is coupled with a linear oscillator—the primary structure. It is shown that the damper is quite effective in a wide range of the exciting force amplitude and in the range of its frequency, which are higher than the resonant frequency; damper efficiency in these regions is fairly stable. The dynamics of the vibro-impact system “primary structure—SSVI NES” is rich and complex, which, however, does not impair the damper efficiency. In complex oscillatory regimes, the damper makes bilateral impacts: it hits both an obstacle and directly against the primary structure, which actually turns a single-sided NES into a double‐sided one. The optimization procedure and the choice of optimal damper parameters play a very important role in damper design. Optimizing multiple damper parameters instead of three shows a synergistic effect and provides better results.","PeriodicalId":495855,"journal":{"name":"Journal of AppliedMath","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/jam.v1i3.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article studies the dynamics and efficiency of a vibro-impact damper (single-sided vibro-impact nonlinear energy sink—SSVI NES) depending on the exciting force parameters. The damper is coupled with a linear oscillator—the primary structure. It is shown that the damper is quite effective in a wide range of the exciting force amplitude and in the range of its frequency, which are higher than the resonant frequency; damper efficiency in these regions is fairly stable. The dynamics of the vibro-impact system “primary structure—SSVI NES” is rich and complex, which, however, does not impair the damper efficiency. In complex oscillatory regimes, the damper makes bilateral impacts: it hits both an obstacle and directly against the primary structure, which actually turns a single-sided NES into a double‐sided one. The optimization procedure and the choice of optimal damper parameters play a very important role in damper design. Optimizing multiple damper parameters instead of three shows a synergistic effect and provides better results.