{"title":"Data-Driven Hazard Avoidance Landing of Parafoil: A Deep Reinforcement Learning Approach","authors":"Junwoo Park, Hyochoong Bang","doi":"10.2514/1.i011281","DOIUrl":null,"url":null,"abstract":"This paper examines a couple of realizations of autonomous landing hazard avoidance technology of parafoil: a reinforcement-learning-based approach and a rule-based approach, advocating the former. Furthermore, comparative advantages and behavioral analogies between the two approaches are presented. In the data-driven approach, a decision process observing only a series of nadir-pointing images is designed without explicit augmentation of vehicle dynamics for the homogeneity of observation data. An agent then learns the hazard avoidance steering law in an end-to-end fashion. On the contrary, the rule-based approach is facilitated via explicit notions of guidance-control hierarchy, vehicle dynamic states, and metric details of ground obstacles. The soft actor–critic method is applied to learn a policy that maps the down-looking images to parafoil brakes, whereas a vector field guidance law is employed in the rule-based approach, considering each hazard as a repulsive source. This paper then presents empirical equivalences in designing both approaches and their distinctions. Numerical experiments in multiple test cases validate the reinforcement learning method and present comparisons between the approaches regarding their resultant trajectories. The interesting behaviors of the resultant policy of the data-driven approach are emphasized.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"2 2","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.i011281","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines a couple of realizations of autonomous landing hazard avoidance technology of parafoil: a reinforcement-learning-based approach and a rule-based approach, advocating the former. Furthermore, comparative advantages and behavioral analogies between the two approaches are presented. In the data-driven approach, a decision process observing only a series of nadir-pointing images is designed without explicit augmentation of vehicle dynamics for the homogeneity of observation data. An agent then learns the hazard avoidance steering law in an end-to-end fashion. On the contrary, the rule-based approach is facilitated via explicit notions of guidance-control hierarchy, vehicle dynamic states, and metric details of ground obstacles. The soft actor–critic method is applied to learn a policy that maps the down-looking images to parafoil brakes, whereas a vector field guidance law is employed in the rule-based approach, considering each hazard as a repulsive source. This paper then presents empirical equivalences in designing both approaches and their distinctions. Numerical experiments in multiple test cases validate the reinforcement learning method and present comparisons between the approaches regarding their resultant trajectories. The interesting behaviors of the resultant policy of the data-driven approach are emphasized.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.