{"title":"Finding tourism niche on image-based social media: Integrating computational methods","authors":"Ho Young Yoon, Seung-Chul Yoo","doi":"10.1177/13567667231180994","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to examine one of the most effective approaches for locating niche tourism attractions that varies by people, using a methodology that combines statistical analysis, deep learning visual image detection, and text mining. Using 30,013 posts with the hashtag #Seoul in English, the analysis focused on the Instagram posts’ time, dominant color, image visual content, and hashtag to identify niche tourism attractions. The analysis result shows that Instagram posts hashtag #Seoul that depicted “young women” and was uploaded in the evening with warm colors such as orange, yellow, and green received more “likes” than other postings. Furthermore, deep learning and text mining analysis were used to identify and forecast the actual image with the most likes in each sectoral domain, as classified by topic modeling, such as “young, woman, outdoor” and “table, plate, indoor.” Through these findings, this study identified niche hotspots of tourism attractions based on those destination image attributes in Instagram photos, which contributes to the popularity of Instagram postings. The methods and results will be particularly useful to marketers and researchers looking to uncover specialized tourism themes and combine popularity measurement with visual image analysis.","PeriodicalId":47859,"journal":{"name":"Journal of Vacation Marketing","volume":"66 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacation Marketing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13567667231180994","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of this research is to examine one of the most effective approaches for locating niche tourism attractions that varies by people, using a methodology that combines statistical analysis, deep learning visual image detection, and text mining. Using 30,013 posts with the hashtag #Seoul in English, the analysis focused on the Instagram posts’ time, dominant color, image visual content, and hashtag to identify niche tourism attractions. The analysis result shows that Instagram posts hashtag #Seoul that depicted “young women” and was uploaded in the evening with warm colors such as orange, yellow, and green received more “likes” than other postings. Furthermore, deep learning and text mining analysis were used to identify and forecast the actual image with the most likes in each sectoral domain, as classified by topic modeling, such as “young, woman, outdoor” and “table, plate, indoor.” Through these findings, this study identified niche hotspots of tourism attractions based on those destination image attributes in Instagram photos, which contributes to the popularity of Instagram postings. The methods and results will be particularly useful to marketers and researchers looking to uncover specialized tourism themes and combine popularity measurement with visual image analysis.
期刊介绍:
Journal of Vacation Marketing is a fully peer reviewed international journal that publishes original research and review articles on topics relating to the marketing of destinations and businesses/organisations involved in the wider tourism, hospitality and events industries. Its objective is to provide a forum for the publication of refereed academic papers and reviewed practitioner papers which are of direct relevance to industry, while meeting the highest standards of intellectual rigour.