Maria A. Weber, Hannah Schunker, Laurène Jouve, Emre Işık
{"title":"Understanding Active Region Origins and Emergence on the Sun and Other Cool Stars","authors":"Maria A. Weber, Hannah Schunker, Laurène Jouve, Emre Işık","doi":"10.1007/s11214-023-01006-5","DOIUrl":null,"url":null,"abstract":"Abstract The emergence of active regions on the Sun is an integral feature of the solar dynamo mechanism. However, details about the generation of active-region-scale magnetism and the journey of this magnetic flux from the interior to the photosphere are still in question. Shifting paradigms are now developing for the source depth of the Sun’s large-scale magnetism, the organization of this magnetism into fibril flux tubes, and the role of convection in shaping active-region observables. Here we review the landscape of flux emergence theories and simulations, highlight the role flux emergence plays in the global dynamo process, and make connections between flux emergence on the Sun and other cool stars. As longer-term and higher fidelity observations of both solar active regions and their associated flows are amassed, it is now possible to place new constraints on models of emerging flux. We discuss the outcomes of statistical studies which provide observational evidence that flux emergence may be a more passive process (at least in the upper convection zone); dominated to a greater extent by the influence of convection and to a lesser extent by buoyancy and the Coriolis force acting on rising magnetic flux tubes than previously thought. We also discuss how the relationship between stellar rotation, fractional convection zone depth, and magnetic activity on other stars can help us better understand the flux emergence processes. Looking forward, we identify open questions regarding magnetic flux emergence that we anticipate can be addressed in the next decade with further observations and simulations.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-01006-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The emergence of active regions on the Sun is an integral feature of the solar dynamo mechanism. However, details about the generation of active-region-scale magnetism and the journey of this magnetic flux from the interior to the photosphere are still in question. Shifting paradigms are now developing for the source depth of the Sun’s large-scale magnetism, the organization of this magnetism into fibril flux tubes, and the role of convection in shaping active-region observables. Here we review the landscape of flux emergence theories and simulations, highlight the role flux emergence plays in the global dynamo process, and make connections between flux emergence on the Sun and other cool stars. As longer-term and higher fidelity observations of both solar active regions and their associated flows are amassed, it is now possible to place new constraints on models of emerging flux. We discuss the outcomes of statistical studies which provide observational evidence that flux emergence may be a more passive process (at least in the upper convection zone); dominated to a greater extent by the influence of convection and to a lesser extent by buoyancy and the Coriolis force acting on rising magnetic flux tubes than previously thought. We also discuss how the relationship between stellar rotation, fractional convection zone depth, and magnetic activity on other stars can help us better understand the flux emergence processes. Looking forward, we identify open questions regarding magnetic flux emergence that we anticipate can be addressed in the next decade with further observations and simulations.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.