首页 > 最新文献

Space Science Reviews最新文献

英文 中文
The Compact Dual Ion Composition Experiment (CoDICE) for the IMAP Mission. IMAP任务的紧凑双离子组成实验(CoDICE)。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2025-12-16 DOI: 10.1007/s11214-025-01251-w
S A Livi, M I Desai, K Ogasawara, L Kistler, E Möbius, M J Starkey, M A Dayeh, D Kataria, H A Elliott, S Hart, B Alterman, D J McComas, C J Pollock, J Mukherjee, J Trevino, S Ferrell, T Brenner, S E Pope, M Tapley, K Pavlas, J S Rankin, M M Shen, L Khoo, M Alimaganbetov, J Teifert, E M Roemer, M Shaw-Lecerf, J Escobar, E R Christian, N A Schwadron, M Gkioulidou, G Grubbs, M Brysch, M Epperly, D George, G Dunn, J Ford, C L Schwendeman, M Commons, S Persyn, S Jaskulek, S Weidner, C Bert, M Ferris, B Rodriguez, C Nunez, C Urdiales, S Cortinas, H Rodriguez

Stationed in an orbit about the first Sun-Earth Lagrange point, L1, NASA's Interstellar Mapping and Acceleration Probe (IMAP) mission is designed to provide well-coordinated measurements of the in-situ solar wind (SW) plasma and interplanetary magnetic field, interstellar pickup ions (PUIs), suprathermal and energetic ions, interstellar and energetic neutral atoms (ENAs), interstellar dust, and 3-dimensional (3D) maps of the global solar wind structure. Together these measurements from ten instruments address two key Heliophysics objectives, namely, 1) the acceleration of charged particles and 2) the interaction of the solar wind with the local interstellar medium. This paper describes one of the five in-situ instruments - the Compact Dual Ion Composition Experiment (CoDICE) that provides comprehensive measurements of the source populations and the charged particles that are accelerated near the Sun and throughout the heliosphere and beyond. CoDICE also provides the 3D velocity distribution functions (3D VDFs) of interstellar PU He+ ions and the isotopic composition of interstellar He and Ne PUIs, thus enabling detailed studies of the properties of the local interstellar medium (LISM) and its interactions with the SW and our heliosphere. CoDICE is a next generation instrument that combines two measurement systems in a novel, compact design to provide 1) the 3D VDFs and mass, isotopic, and ionic charge state composition of the lower energy SW, suprathermal, and PUIs between ∼0.5-80 keV/q, and 2) the arrival directions, and mass and isotopic composition of higher energy H-Fe ions between ∼0.03-5 MeV/nuc. CoDICE also provides measurements of SW abundances and charge states, as well as the intensities of suprathermal protons in four different directions to the real-time I-ALiRT data stream for Space Weather research and monitoring.

NASA的星际测绘和加速探测器(IMAP)任务位于第一个太阳-地球拉格朗日点L1附近的轨道上,旨在提供对原位太阳风(SW)等离子体和行星际磁场、星际拾取离子(PUIs)、超热和高能离子、星际和高能中性原子(ENAs)、星际尘埃的良好协调测量,以及全球太阳风结构的三维(3D)地图。这些来自10个仪器的测量结果共同解决了两个关键的太阳物理学目标,即1)带电粒子的加速和2)太阳风与当地星际介质的相互作用。本文介绍了五种原位仪器之一-紧凑双离子组成实验(CoDICE),它提供了源种群和带电粒子的全面测量,这些粒子在太阳附近和整个日球层以及更远的地方加速。CoDICE还提供了星际PU He+离子的三维速度分布函数(3D vdf)以及星际He和Ne PUIs的同位素组成,从而可以详细研究局部星际介质(LISM)的性质及其与SW和我们的日球层的相互作用。CoDICE是新一代仪器,以新颖紧凑的设计结合了两种测量系统,可提供1)在~ 0.5-80 keV/q之间的低能量SW、超热和pui的3D vdf和质量、同位素和离子电荷态组成,以及2)在~ 0.03-5 MeV/nuc之间的高能H-Fe离子的到达方向、质量和同位素组成。CoDICE还为实时I-ALiRT数据流提供了SW丰度和电荷状态的测量,以及四个不同方向的超热质子强度,用于空间天气研究和监测。
{"title":"The Compact Dual Ion Composition Experiment (CoDICE) for the IMAP Mission.","authors":"S A Livi, M I Desai, K Ogasawara, L Kistler, E Möbius, M J Starkey, M A Dayeh, D Kataria, H A Elliott, S Hart, B Alterman, D J McComas, C J Pollock, J Mukherjee, J Trevino, S Ferrell, T Brenner, S E Pope, M Tapley, K Pavlas, J S Rankin, M M Shen, L Khoo, M Alimaganbetov, J Teifert, E M Roemer, M Shaw-Lecerf, J Escobar, E R Christian, N A Schwadron, M Gkioulidou, G Grubbs, M Brysch, M Epperly, D George, G Dunn, J Ford, C L Schwendeman, M Commons, S Persyn, S Jaskulek, S Weidner, C Bert, M Ferris, B Rodriguez, C Nunez, C Urdiales, S Cortinas, H Rodriguez","doi":"10.1007/s11214-025-01251-w","DOIUrl":"10.1007/s11214-025-01251-w","url":null,"abstract":"<p><p>Stationed in an orbit about the first Sun-Earth Lagrange point, L1, NASA's Interstellar Mapping and Acceleration Probe (IMAP) mission is designed to provide well-coordinated measurements of the in-situ solar wind (SW) plasma and interplanetary magnetic field, interstellar pickup ions (PUIs), suprathermal and energetic ions, interstellar and energetic neutral atoms (ENAs), interstellar dust, and 3-dimensional (3D) maps of the global solar wind structure. Together these measurements from ten instruments address two key Heliophysics objectives, namely, 1) the acceleration of charged particles and 2) the interaction of the solar wind with the local interstellar medium. This paper describes one of the five in-situ instruments - the Compact Dual Ion Composition Experiment (CoDICE) that provides comprehensive measurements of the source populations and the charged particles that are accelerated near the Sun and throughout the heliosphere and beyond. CoDICE also provides the 3D velocity distribution functions (3D VDFs) of interstellar PU He<sup>+</sup> ions and the isotopic composition of interstellar He and Ne PUIs, thus enabling detailed studies of the properties of the local interstellar medium (LISM) and its interactions with the SW and our heliosphere. CoDICE is a next generation instrument that combines two measurement systems in a novel, compact design to provide 1) the 3D VDFs and mass, isotopic, and ionic charge state composition of the lower energy SW, suprathermal, and PUIs between ∼0.5-80 keV/q, and 2) the arrival directions, and mass and isotopic composition of higher energy H-Fe ions between ∼0.03-5 MeV/nuc. CoDICE also provides measurements of SW abundances and charge states, as well as the intensities of suprathermal protons in four different directions to the real-time I-ALiRT data stream for Space Weather research and monitoring.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"1"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12708712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145782322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The IMAP Observatory Overview. IMAP天文台概览。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2026-01-29 DOI: 10.1007/s11214-026-01272-z
K P Hegarty, S Kubota, M Cully, D J McComas, E R Christian, N A Schwadron, M Gkioulidou, S Bushman, C Collura, M Dauberman, C Drabenstadt, A Driesman, A Dubill, B Duffy, E Coleman, D Eng, C J Ercol, A Gerger, R Hall, J Hahn, M Haque, S Hefter, D Jeong, D Jones, J Kelman, C Krupiarz, F Kujawa, C Lippe, D Matlin, C Monaco, D Myers, E Rivera Sepulveda, D Rodriguez, L Roufberg, J Scherrer, M Schwinger, A Shin, F Siddique, E Smith, R Smith, M Tapley, S Vernon, C Vigil, S Weidner

NASA's Interstellar Mapping and Acceleration Probe (IMAP) mission simultaneously investigates the acceleration of particles expelled from the Sun, and how the interaction of these particles with the local interstellar medium shapes our heliospheric boundary. The IMAP observatory makes critical measurements that facilitate this ground breaking science by incorporating a spin stabilized spacecraft orbiting around the first Sun-Earth Lagrange point, L1, with a payload comprised of ten unique instruments, making comprehensive and synergistic observations of solar wind, suprathermal, energetic particles and magnetic field, energetic neutral atoms mapping the boundary of our heliosphere, as well as interstellar neutral atoms and dust. This paper provides details on the design, integration, and testing of the IMAP observatory.

美国宇航局的星际测绘和加速探测器(IMAP)任务同时调查了从太阳喷出的粒子的加速度,以及这些粒子与当地星际介质的相互作用如何塑造了我们的日球层边界。IMAP天文台通过在第一个太阳-地球拉格朗日点L1周围运行的自旋稳定航天器,以及由十个独特仪器组成的有效载荷,对太阳风,超热,高能粒子和磁场,绘制我们的日球层边界的高能中性原子,以及星际中性原子和尘埃进行全面和协同观测,从而促进了这一突破性科学的关键测量。本文详细介绍了IMAP天文台的设计、集成和测试。
{"title":"The IMAP Observatory Overview.","authors":"K P Hegarty, S Kubota, M Cully, D J McComas, E R Christian, N A Schwadron, M Gkioulidou, S Bushman, C Collura, M Dauberman, C Drabenstadt, A Driesman, A Dubill, B Duffy, E Coleman, D Eng, C J Ercol, A Gerger, R Hall, J Hahn, M Haque, S Hefter, D Jeong, D Jones, J Kelman, C Krupiarz, F Kujawa, C Lippe, D Matlin, C Monaco, D Myers, E Rivera Sepulveda, D Rodriguez, L Roufberg, J Scherrer, M Schwinger, A Shin, F Siddique, E Smith, R Smith, M Tapley, S Vernon, C Vigil, S Weidner","doi":"10.1007/s11214-026-01272-z","DOIUrl":"10.1007/s11214-026-01272-z","url":null,"abstract":"<p><p>NASA's Interstellar Mapping and Acceleration Probe (IMAP) mission simultaneously investigates the acceleration of particles expelled from the Sun, and how the interaction of these particles with the local interstellar medium shapes our heliospheric boundary. The IMAP observatory makes critical measurements that facilitate this ground breaking science by incorporating a spin stabilized spacecraft orbiting around the first Sun-Earth Lagrange point, L1, with a payload comprised of ten unique instruments, making comprehensive and synergistic observations of solar wind, suprathermal, energetic particles and magnetic field, energetic neutral atoms mapping the boundary of our heliosphere, as well as interstellar neutral atoms and dust. This paper provides details on the design, integration, and testing of the IMAP observatory.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"16"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12855388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146107231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exo-Geoscience Perspectives Beyond Habitability. 超越宜居性的外地球科学视角。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2026-01-14 DOI: 10.1007/s11214-026-01265-y
Tilman Spohn, Aki Roberge, M J Way, João C Duarte, Francesca Miozzi, Philipp Baumeister, Paul Byrne, Charles H Lineweaver

This article reviews the emerging field of exo-geoscience, focusing on the geological and geophysical processes thought to influence the evolution and (eu)habitability of rocky exoplanets. We examine the possible roles of planetary interiors, tectonic regimes, continental coverage, volatile cycling, magnetic fields, and atmospheric composition and evolution in shaping long-term climate stability and biospheric potential. Comparisons with Earth and other planets in the Solar System highlight the diversity of planetary conditions and the rarity of conditions relevant to life. We also discuss contingency and convergence in planetary and biological evolution as they relate to the spread of life in the universe. The observational limits of current and planned missions are assessed, emphasizing the need for models that connect internal dynamics to detectable atmospheric and surface signatures as well as the need for laboratory measurements of planetary properties under a wide range of conditions. The large number of exoplanets promises opportunities for empirical and statistical studies of processes that may have occurred earlier in Earth's history, as well as for the other pathways rocky planets and biospheres may take. Thus, exo-geoscience provides a framework for interpreting exoplanet diversity and refining strategies for detecting life beyond the Solar System.

本文综述了外地球科学的新兴领域,重点关注被认为影响岩石系外行星演化和(eu)可居住性的地质和地球物理过程。我们研究了行星内部、构造机制、大陆覆盖、挥发性循环、磁场和大气成分及其演变在形成长期气候稳定性和生物圈潜力方面的可能作用。与地球和太阳系其他行星的比较突出了行星条件的多样性和与生命相关的条件的稀有性。我们还讨论了行星和生物进化中的偶然性和收敛性,因为它们与宇宙中生命的传播有关。评估了当前和计划中的任务的观测极限,强调需要将内部动力学与可探测的大气和表面特征联系起来的模型,以及需要在各种条件下对行星特性进行实验室测量。大量的系外行星为地球历史早期可能发生的过程的经验和统计研究提供了机会,也为岩石行星和生物圈可能采取的其他途径提供了机会。因此,地外地球科学为解释系外行星的多样性和改进探测太阳系外生命的策略提供了一个框架。
{"title":"Exo-Geoscience Perspectives Beyond Habitability.","authors":"Tilman Spohn, Aki Roberge, M J Way, João C Duarte, Francesca Miozzi, Philipp Baumeister, Paul Byrne, Charles H Lineweaver","doi":"10.1007/s11214-026-01265-y","DOIUrl":"10.1007/s11214-026-01265-y","url":null,"abstract":"<p><p>This article reviews the emerging field of exo-geoscience, focusing on the geological and geophysical processes thought to influence the evolution and (eu)habitability of rocky exoplanets. We examine the possible roles of planetary interiors, tectonic regimes, continental coverage, volatile cycling, magnetic fields, and atmospheric composition and evolution in shaping long-term climate stability and biospheric potential. Comparisons with Earth and other planets in the Solar System highlight the diversity of planetary conditions and the rarity of conditions relevant to life. We also discuss contingency and convergence in planetary and biological evolution as they relate to the spread of life in the universe. The observational limits of current and planned missions are assessed, emphasizing the need for models that connect internal dynamics to detectable atmospheric and surface signatures as well as the need for laboratory measurements of planetary properties under a wide range of conditions. The large number of exoplanets promises opportunities for empirical and statistical studies of processes that may have occurred earlier in Earth's history, as well as for the other pathways rocky planets and biospheres may take. Thus, exo-geoscience provides a framework for interpreting exoplanet diversity and refining strategies for detecting life beyond the Solar System.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"9"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12804257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145998104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMAP's Role in Understanding Particle Injection and Energization Throughout the Heliosphere. IMAP在理解整个日光层的粒子注入和能量化中的作用。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2026-01-07 DOI: 10.1007/s11214-025-01257-4
C M S Cohen, B L Alterman, D N Baker, A Bruno, M Bzowski, E R Christian, I J Cohen, S Dalla, M A Dayeh, M I Desai, H A Elliott, J Giacalone, M Gkioulidou, F Guo, T Horbury, S G Kanekal, I Kowalska-Leszczyńska, C O Lee, G I Livadiotis, J G Luhmann, W H Matthaeus, D J McComas, J G Mitchell, E Moebius, J Rankin, J D Richardson, N A Schwadron, R Skoug, D Turner, G Zank, E J Zirnstein

The payload of the Interstellar Mapping and Acceleration Probe (IMAP) includes sophisticated in situ instruments to measure solar wind plasma and magnetic fields, suprathermal and energetic particles at 1 au as well as unprecedented remote sensing instruments to observe the energetic neutral atoms (ENAs) in the outer heliosphere and the ultraviolet glow of the interstellar neutral H interacting with the three-dimensional solar wind. This unique combination of sensors on a single platform allows connections to be made between the inner and outer heliosphere to an extent never before possible. This article focuses on the scientific theme of connecting the physics of particle acceleration and transport throughout the heliosphere. Such studies enabled by IMAP are organized into three broad categories: i) fundamental particle acceleration and transport processes, ii) heliospheric variability that affects those processes, and iii) inner heliospheric science.

星际测绘和加速探测器(IMAP)的有效载荷包括精密的原位仪器,用于测量太阳风等离子体和磁场、超热和高能粒子,以及前所未有的遥感仪器,用于观测外日球层的高能中性原子(ENAs)和星际中性H与三维太阳风相互作用的紫外光。这种独特的传感器组合在一个平台上,使内外日球层之间的连接达到了前所未有的程度。这篇文章的重点是连接粒子加速和输运的物理在整个日球层的科学主题。IMAP支持的这类研究分为三大类:i)基本粒子加速和输运过程,ii)影响这些过程的日球层变异性,以及iii)内部日球层科学。
{"title":"IMAP's Role in Understanding Particle Injection and Energization Throughout the Heliosphere.","authors":"C M S Cohen, B L Alterman, D N Baker, A Bruno, M Bzowski, E R Christian, I J Cohen, S Dalla, M A Dayeh, M I Desai, H A Elliott, J Giacalone, M Gkioulidou, F Guo, T Horbury, S G Kanekal, I Kowalska-Leszczyńska, C O Lee, G I Livadiotis, J G Luhmann, W H Matthaeus, D J McComas, J G Mitchell, E Moebius, J Rankin, J D Richardson, N A Schwadron, R Skoug, D Turner, G Zank, E J Zirnstein","doi":"10.1007/s11214-025-01257-4","DOIUrl":"10.1007/s11214-025-01257-4","url":null,"abstract":"<p><p>The payload of the Interstellar Mapping and Acceleration Probe (IMAP) includes sophisticated in situ instruments to measure solar wind plasma and magnetic fields, suprathermal and energetic particles at 1 au as well as unprecedented remote sensing instruments to observe the energetic neutral atoms (ENAs) in the outer heliosphere and the ultraviolet glow of the interstellar neutral H interacting with the three-dimensional solar wind. This unique combination of sensors on a single platform allows connections to be made between the inner and outer heliosphere to an extent never before possible. This article focuses on the scientific theme of connecting the physics of particle acceleration and transport throughout the heliosphere. Such studies enabled by IMAP are organized into three broad categories: i) fundamental particle acceleration and transport processes, ii) heliospheric variability that affects those processes, and iii) inner heliospheric science.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"6"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12779750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145953100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks (COMPASS): A Mission Concept to Explore the Extremes of Jupiter's Magnetosphere. 磁层粒子加速、源和汇的综合观测(COMPASS):探索木星磁层极端的任务概念。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2026-01-27 DOI: 10.1007/s11214-025-01249-4
George Clark, P Kollmann, J Kinnison, D Kelly, A Haapala, W Li, A N Jaynes, L Blum, R Marshall, D Turner, I Cohen, A Ukhorskiy, B H Mauk, E Roussos, Q Nénon, A Drozdov, E Woodfield, W Dunn, G Berland, R Kraft, P K G Williams, H T Smith, G Hospodarsky, X Wu, J Hulsman, T P O'Brien, M Looper, K Sorathia, A Sciola, A Sicard, M Donegan, B Clare, D Emmell, J Wirzburger, D Sepulveda, L Roufberg, J Perry, J Schellhase, D Pergosky, E Able, M O'Neill, C Fernandes, D Chattopadhyay, S Bibelhauser, S Kijewski, J Pulkowski, M Furrow, C Feldman, J Nichols, N Carr, H Verma, S Lindsay, E Bunce, B Parry, A Martindale

Since the dawn of the space age in 1957, humanity has achieved the remarkable feat of exploring all the planets in our Solar System with robotic spacecraft. This glimpse into the diversity of space environments that make up our Solar System has revealed that no two planetary systems are identical; however, each planet harbors key clues in working toward a more unified and predictive understanding of the basic structure and dynamics of all planetary, and even exosolar, magnetospheres. A common feature found in all strongly magnetized planets are regions of trapped, high-energy charged particles called radiation belts. Dedicated missions studying the radiation belts encompassing Earth have led to major space physics discoveries over the past several decades, but Earth's magnetosphere exists in a relatively small swath of the parameter space found in our Solar System. To expand that parameter space, we present a mission concept that was reported in the recent National Academies of Sciences, Engineering, and Medicine (NASEM) Decadal Survey to expand the frontiers of Heliophysics in the 2024-2033 decade. The mission concept is called COMPASS, short for Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks. COMPASS is a mission dedicated to the exploration of Jupiter's radiation belts, with an unprecedented suite of instruments covering i) particle species from thermal plasma to 10 tens of MeV electrons and relativistic protons and heavy ions; ii) comprehensive magnetic and electric fields and waves; and iii) dedicated X-ray imaging. COMPASS will enable the scientific community to test existing hypotheses and make new discoveries of how Jupiter's radiation belts are sourced, accelerated, and lost within such a complex system.

自1957年太空时代开始以来,人类已经实现了用机器人宇宙飞船探索太阳系所有行星的非凡壮举。对构成我们太阳系的空间环境多样性的一瞥揭示了没有两个行星系统是相同的;然而,每一颗行星都有关键的线索,有助于我们对所有行星、甚至太阳系外磁层的基本结构和动力学有更统一、更有预测性的理解。在所有强磁化的行星上发现的一个共同特征是被捕获的高能带电粒子区域,称为辐射带。在过去的几十年里,专门研究环绕地球的辐射带的任务已经导致了重大的空间物理学发现,但地球的磁层存在于我们太阳系中相对较小的参数空间中。为了扩展这个参数空间,我们提出了一个任务概念,该概念在最近的美国国家科学院、工程院和医学院(NASEM)十年调查中报告,以扩大2024-2033十年的太阳物理学前沿。这项任务的概念被称为COMPASS,是对磁层粒子加速、源和汇的综合观测的缩写。COMPASS是一项致力于探索木星辐射带的任务,配备了前所未有的一套仪器,涵盖i)从热等离子体到10个MeV电子、相对论质子和重离子的粒子种类;Ii)综合磁场、电场和波;iii)专用x射线成像。COMPASS将使科学界能够测试现有的假设,并对木星辐射带是如何在这样一个复杂的系统中产生、加速和消失有新的发现。
{"title":"Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks (COMPASS): A Mission Concept to Explore the Extremes of Jupiter's Magnetosphere.","authors":"George Clark, P Kollmann, J Kinnison, D Kelly, A Haapala, W Li, A N Jaynes, L Blum, R Marshall, D Turner, I Cohen, A Ukhorskiy, B H Mauk, E Roussos, Q Nénon, A Drozdov, E Woodfield, W Dunn, G Berland, R Kraft, P K G Williams, H T Smith, G Hospodarsky, X Wu, J Hulsman, T P O'Brien, M Looper, K Sorathia, A Sciola, A Sicard, M Donegan, B Clare, D Emmell, J Wirzburger, D Sepulveda, L Roufberg, J Perry, J Schellhase, D Pergosky, E Able, M O'Neill, C Fernandes, D Chattopadhyay, S Bibelhauser, S Kijewski, J Pulkowski, M Furrow, C Feldman, J Nichols, N Carr, H Verma, S Lindsay, E Bunce, B Parry, A Martindale","doi":"10.1007/s11214-025-01249-4","DOIUrl":"10.1007/s11214-025-01249-4","url":null,"abstract":"<p><p>Since the dawn of the space age in 1957, humanity has achieved the remarkable feat of exploring all the planets in our Solar System with robotic spacecraft. This glimpse into the diversity of space environments that make up our Solar System has revealed that no two planetary systems are identical; however, each planet harbors key clues in working toward a more unified and predictive understanding of the basic structure and dynamics of all planetary, and even exosolar, magnetospheres. A common feature found in all strongly magnetized planets are regions of trapped, high-energy charged particles called radiation belts. Dedicated missions studying the radiation belts encompassing Earth have led to major space physics discoveries over the past several decades, but Earth's magnetosphere exists in a relatively small swath of the parameter space found in our Solar System. To expand that parameter space, we present a mission concept that was reported in the recent National Academies of Sciences, Engineering, and Medicine (NASEM) Decadal Survey to expand the frontiers of Heliophysics in the 2024-2033 decade. The mission concept is called COMPASS, short for Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks. COMPASS is a mission dedicated to the exploration of Jupiter's radiation belts, with an unprecedented suite of instruments covering i) particle species from thermal plasma to 10 tens of MeV electrons and relativistic protons and heavy ions; ii) comprehensive magnetic and electric fields and waves; and iii) dedicated X-ray imaging. COMPASS will enable the scientific community to test existing hypotheses and make new discoveries of how Jupiter's radiation belts are sourced, accelerated, and lost within such a complex system.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"15"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12847200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146086792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geodetic Investigations of the Europa Clipper Mission. 欧罗巴快船任务的大地测量研究。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2026-02-03 DOI: 10.1007/s11214-025-01250-x
G Steinbrügge, R S Park, J H Roberts, M Bland, S Brooks, J Castillo-Rogez, G Cascioli, A Genova, T Greathouse, H Hussmann, R Kirk, A Magnanini, E Mazarico, F Nimmo, M S Park, F Petricca, K Retherford, D M Schroeder, K M Soderlund, P Tortora, M Zannoni

The Europa Clipper mission will investigate the geophysical properties of Europa, one of Jupiter's Galilean moons, to assess its habitability. Geodetic measurements will play a critical role in determining Europa's internal structure, including the thickness of the ice shell, the presence and extent of a subsurface ocean, and the distribution of mass in the deeper interior. To build the necessary geodetic data set, the Geodesy Focus Group (GFG) coordinates cross-instrument efforts to measure Europa's global shape, rotational parameters, gravity field, and degree-2 tidal Love numbers ( k 2 and h 2 ). Here we summarize how data from the Gravity/Radio Science (G/RS) investigation, Europa Imaging System (EIS), Radar for Europa Assessment and Sounding (REASON), and Europa Ultraviolet Spectrograph (Europa-UVS) will be used to infer geodetic constraints on the interior structure and to establish a precise cartographic reference system for geophysical and geological interpretation. Together, the resulting geodetic information will contribute to a deeper understanding of Europa's internal dynamics and the potential habitability of its ocean.

木卫二快船任务将调查木卫二的地球物理特性,以评估其可居住性。木卫二是木星的伽利略卫星之一。大地测量将在确定木卫二内部结构方面发挥关键作用,包括冰壳的厚度,地下海洋的存在和范围,以及内部深处的质量分布。为了建立必要的大地测量数据集,大地测量焦点小组(GFG)协调跨仪器的努力,测量木卫二的全球形状、旋转参数、重力场和2度潮汐洛夫数(k2和h2)。本文总结了重力/无线电科学(G/RS)调查、木卫二成像系统(EIS)、木卫二评估和探测雷达(REASON)和木卫二紫外光谱仪(Europa- uvs)的数据将如何用于推断内部结构的大地测量约束,并建立精确的地球物理和地质解释制图参考系统。总之,由此产生的大地测量信息将有助于更深入地了解木卫二的内部动力学及其海洋的潜在可居住性。
{"title":"Geodetic Investigations of the Europa Clipper Mission.","authors":"G Steinbrügge, R S Park, J H Roberts, M Bland, S Brooks, J Castillo-Rogez, G Cascioli, A Genova, T Greathouse, H Hussmann, R Kirk, A Magnanini, E Mazarico, F Nimmo, M S Park, F Petricca, K Retherford, D M Schroeder, K M Soderlund, P Tortora, M Zannoni","doi":"10.1007/s11214-025-01250-x","DOIUrl":"10.1007/s11214-025-01250-x","url":null,"abstract":"<p><p>The Europa Clipper mission will investigate the geophysical properties of Europa, one of Jupiter's Galilean moons, to assess its habitability. Geodetic measurements will play a critical role in determining Europa's internal structure, including the thickness of the ice shell, the presence and extent of a subsurface ocean, and the distribution of mass in the deeper interior. To build the necessary geodetic data set, the Geodesy Focus Group (GFG) coordinates cross-instrument efforts to measure Europa's global shape, rotational parameters, gravity field, and degree-2 tidal Love numbers ( <math><msub><mi>k</mi> <mn>2</mn></msub> </math> and <math><msub><mi>h</mi> <mn>2</mn></msub> </math> ). Here we summarize how data from the Gravity/Radio Science (G/RS) investigation, Europa Imaging System (EIS), Radar for Europa Assessment and Sounding (REASON), and Europa Ultraviolet Spectrograph (Europa-UVS) will be used to infer geodetic constraints on the interior structure and to establish a precise cartographic reference system for geophysical and geological interpretation. Together, the resulting geodetic information will contribute to a deeper understanding of Europa's internal dynamics and the potential habitability of its ocean.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"17"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12868062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146126423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water Versus Land on Temperate Rocky Planets. 温带岩石行星上的水和陆地。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2026-01-08 DOI: 10.1007/s11214-025-01264-5
Claire Marie Guimond, Tilman Spohn, Svetlana Berdyugina, Paul K Byrne, Nicolas Coltice, Donald M Glaser, Manasvi Lingam, Charles H Lineweaver, Peter A Cawood

Water and land surfaces on a planet interact in particular ways with gases in the atmosphere and with radiation from the star. These interactions define the environments that prevail on the planet, some of which may be more amenable to prebiotic chemistry, some to the evolution of more complex life. This review article covers (i) the physical conditions that determine the ratio of land to sea on a rocky planet, (ii) how this ratio would affect climatic and biologic processes, and (iii) whether future astronomical observations might constrain this ratio on exoplanets. Water can be delivered in multiple ways to a growing rocky planet - and although we may not agree on the contribution of different mechanism(s) to Earth's bulk water, hydrated building blocks and nebular ingassing could at least in principle supply several oceans' worth. The water that planets can sequester over eons in their solid deep mantles is limited by the water concentration at water saturation of nominally anhydrous mantle minerals, being in sum likely less than 2000 ppm of the planet mass. Water is cycled between mantle and surface through outgassing and ingassing mechanisms that, while tightly linked to tectonics, do not necessarily require plate tectonics in every case. The actual water/land ratio at a given time then emerges from the balance between the volume of surface water on the one hand, and on the other hand, the shape of the planet (its ocean basin volume) that is carved out by dynamic topography, the petrologic evolution of continents, impact cratering, and other surface-sculpting processes. By leveraging the contrast in reflectance properties of water and land surfaces, spatially resolved 2D maps of Earth-as-an-exoplanet have been retrieved from models using real Earth observations, demonstrating that water/land ratios of rocky exoplanets may be determined from data delivered by large-aperture, high-contrast imaging telescopes in the future.

行星上的水和陆地表面以特殊的方式与大气中的气体和恒星的辐射相互作用。这些相互作用决定了地球上普遍存在的环境,其中一些可能更适合生命起源前的化学反应,而另一些则适合更复杂生命的进化。这篇综述文章涵盖了(i)决定岩石行星上陆地与海洋比例的物理条件,(ii)这一比例将如何影响气候和生物过程,以及(iii)未来的天文观测是否会限制系外行星上的这一比例。水可以通过多种方式输送到一个正在成长的岩石行星上——尽管我们可能对地球上大量水的不同机制的贡献意见不一,但至少在原则上,水合构造块和星云吸入性可以提供几个海洋的水。行星可以在其固体深地幔中隔离的水在千万年中受到名义上无水的地幔矿物在水饱和时的水浓度的限制,总的来说可能小于地球质量的2000ppm。水通过出气和入气机制在地幔和地表之间循环,虽然这与构造密切相关,但并不一定需要在每种情况下都需要板块构造。在给定时间的实际水陆比,一方面是地表水的体积,另一方面是行星的形状(海洋盆地的体积),这是由动态地形、大陆的岩石学演化、撞击坑和其他表面雕刻过程雕刻出来的。通过利用水和陆地表面反射率特性的对比,从使用真实地球观测的模型中检索到地球作为系外行星的空间分辨率二维地图,表明岩石系外行星的水/土地比例可能在未来由大口径、高对比度成像望远镜提供的数据确定。
{"title":"Water Versus Land on Temperate Rocky Planets.","authors":"Claire Marie Guimond, Tilman Spohn, Svetlana Berdyugina, Paul K Byrne, Nicolas Coltice, Donald M Glaser, Manasvi Lingam, Charles H Lineweaver, Peter A Cawood","doi":"10.1007/s11214-025-01264-5","DOIUrl":"10.1007/s11214-025-01264-5","url":null,"abstract":"<p><p>Water and land surfaces on a planet interact in particular ways with gases in the atmosphere and with radiation from the star. These interactions define the environments that prevail on the planet, some of which may be more amenable to prebiotic chemistry, some to the evolution of more complex life. This review article covers (i) the physical conditions that determine the ratio of land to sea on a rocky planet, (ii) how this ratio would affect climatic and biologic processes, and (iii) whether future astronomical observations might constrain this ratio on exoplanets. Water can be delivered in multiple ways to a growing rocky planet - and although we may not agree on the contribution of different mechanism(s) to Earth's bulk water, hydrated building blocks and nebular ingassing could at least in principle supply several oceans' worth. The water that planets can sequester over eons in their solid deep mantles is limited by the water concentration at water saturation of nominally anhydrous mantle minerals, being in sum likely less than 2000 ppm of the planet mass. Water is cycled between mantle and surface through outgassing and ingassing mechanisms that, while tightly linked to tectonics, do not necessarily require plate tectonics in every case. The actual water/land ratio at a given time then emerges from the balance between the volume of surface water on the one hand, and on the other hand, the shape of the planet (its ocean basin volume) that is carved out by dynamic topography, the petrologic evolution of continents, impact cratering, and other surface-sculpting processes. By leveraging the contrast in reflectance properties of water and land surfaces, spatially resolved 2D maps of Earth-as-an-exoplanet have been retrieved from models using real Earth observations, demonstrating that water/land ratios of rocky exoplanets may be determined from data delivered by large-aperture, high-contrast imaging telescopes in the future.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"8"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12783251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145953082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of Magnetic Switchbacks in the Near-Sun Solar Wind. 近太阳太阳风中磁转换的特性。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2026-01-27 DOI: 10.1007/s11214-026-01267-w
Samuel T Badman, Naïs Fargette, Lorenzo Matteini, Oleksiy V Agapitov, Mojtaba Akhavan-Tafti, Stuart D Bale, Srijan Bharati Das, Nina Bizien, Trevor A Bowen, Thierry Dudok de Wit, Clara Froment, Timothy Horbury, Jia Huang, Vamsee Krishna Jagarlamudi, Andrea Larosa, Maria S Madjarska, Olga Panasenco, Etienne Pariat, Nour E Raouafi, Alexis P Rouillard, David Ruffolo, Nikos Sioulas, Shirsh Lata Soni, Luca Sorriso-Valvo, Gabriel Ho Hin Suen, Marco Velli, Jaye Verniero

Magnetic switchbacks are fluctuations in the solar wind in which the interplanetary magnetic field sharply deflects away from its background direction so as to create folds in magnetic field lines while remaining of roughly constant magnitude. The magnetic field and velocity fluctuations are extremely well correlated in a way corresponding to Alfvénic fluctuations propagating away from the Sun. For a background field which is nearly radial this causes an outwardly propagating jet to form. Switchbacks and their characteristic velocity jets have recently been observed to be nearly ubiquitous by Parker Solar Probe with in situ measurements in the inner heliosphere within 0.3 AU. Their prevalence, substantial energy content, and potentially fundamental role in the dynamics of the outer corona and solar wind motivate the significant research efforts into their understanding. Here we review the in situ measurements of these structures (primarily by Parker Solar Probe). We discuss how they are identified and measured, and present an overview of the primary observational properties of these structures, both in terms of individual switchbacks and their collective arrangement into "patches". We identify both properties for which there is a strong consensus and those that have limited or qualified support and require further investigation. We identify and collate several open questions and recommendations for future studies.

磁反转是太阳风的波动,其中行星际磁场急剧偏离其背景方向,从而在磁力线上产生褶皱,同时保持大致恒定的大小。磁场和速度波动以一种与从太阳向外传播的阿尔夫萨奇波动相对应的方式密切相关。对于接近径向的背景场,这会导致向外传播的射流形成。最近,帕克太阳探测器在0.3 AU以内的内日球层进行了原位测量,发现了转换和它们特有的速度射流几乎无处不在。它们的普遍性、巨大的能量含量以及在外日冕和太阳风动力学中潜在的基本作用激发了对它们的理解的重大研究努力。在这里,我们回顾了这些结构的原位测量(主要是帕克太阳探测器)。我们讨论了它们是如何被识别和测量的,并概述了这些结构的主要观测特性,包括个体的开关和它们的集体排列成“斑块”。我们确定了有强烈共识的属性和那些有有限或合格的支持并需要进一步调查的属性。我们确定并整理了几个悬而未决的问题,并为未来的研究提出了建议。
{"title":"Properties of Magnetic Switchbacks in the Near-Sun Solar Wind.","authors":"Samuel T Badman, Naïs Fargette, Lorenzo Matteini, Oleksiy V Agapitov, Mojtaba Akhavan-Tafti, Stuart D Bale, Srijan Bharati Das, Nina Bizien, Trevor A Bowen, Thierry Dudok de Wit, Clara Froment, Timothy Horbury, Jia Huang, Vamsee Krishna Jagarlamudi, Andrea Larosa, Maria S Madjarska, Olga Panasenco, Etienne Pariat, Nour E Raouafi, Alexis P Rouillard, David Ruffolo, Nikos Sioulas, Shirsh Lata Soni, Luca Sorriso-Valvo, Gabriel Ho Hin Suen, Marco Velli, Jaye Verniero","doi":"10.1007/s11214-026-01267-w","DOIUrl":"10.1007/s11214-026-01267-w","url":null,"abstract":"<p><p>Magnetic switchbacks are fluctuations in the solar wind in which the interplanetary magnetic field sharply deflects away from its background direction so as to create folds in magnetic field lines while remaining of roughly constant magnitude. The magnetic field and velocity fluctuations are extremely well correlated in a way corresponding to Alfvénic fluctuations propagating away from the Sun. For a background field which is nearly radial this causes an outwardly propagating jet to form. Switchbacks and their characteristic velocity jets have recently been observed to be nearly ubiquitous by Parker Solar Probe with <i>in situ</i> measurements in the inner heliosphere within 0.3 AU. Their prevalence, substantial energy content, and potentially fundamental role in the dynamics of the outer corona and solar wind motivate the significant research efforts into their understanding. Here we review the <i>in situ</i> measurements of these structures (primarily by Parker Solar Probe). We discuss how they are identified and measured, and present an overview of the primary observational properties of these structures, both in terms of individual switchbacks and their collective arrangement into \"patches\". We identify both properties for which there is a strong consensus and those that have limited or qualified support and require further investigation. We identify and collate several open questions and recommendations for future studies.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"14"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12847248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146086854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The IMAP-Ultra Energetic Neutral Atom (ENA) Imager. 超高能中性原子(ENA)成像仪。
IF 7.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-01 Epub Date: 2025-12-24 DOI: 10.1007/s11214-025-01256-5
Matina Gkioulidou, G B Clark, D G Mitchell, A R Dupont, K L Anderson, S Begley, M Bzowski, E R Christian, C E Cook, A B Crew, M J Cully, R DeMajistre, T J Diaz, R J Drexler, N T Dutton, C J Gingrich, J R Hayes, C M Huber, J Hutcheson, S E Jaskulek, P Kollmann, M T LeBlanc, J Lees, D J McComas, K S Nelson, C W Parker, D B Reisenfeld, E A Rollend, C E Schlemm, N A Schwadron, R Verrill, J Yen, J Yin

NASA's Interstellar Mapping and Acceleration Probe (IMAP), a spinner spacecraft in orbit around L1, is taking in situ observations of thermal, pickup, and energetic particles, while simultaneously remotely sensing the effects that these particles have in the outer heliosphere, by measuring Energetic Neutral Atoms (ENA) emissions produced by neutralized energetic ions when they charge exchange with interstellar neutral particles in that region. The IMAP-Ultra instrument (Ultra), one of the three ENA imagers on IMAP, measures the emission of the highest energy ENAs produced in the heliosheath and beyond. Ultra consists of two sensors with one sensor angled at 90° (Ultra90) and the other at 45° (Ultra45) from the spacecraft's spin axis. Ultra was designed and optimized to measure hydrogen (H) ENAs from 5 - 40 keV, but the sensors have been demonstrated to measure H from ∼3 - 300 keV. Additionally, Ultra's large ∼96° × 120° field of view (FoV) is capable of achieving angular resolutions ≤ 6° FWHM for ≥ 10 keV for H ENAs. Ultra provides high spatial resolution, full heliosphere maps, detecting changes in the spatial distribution of ENAs, on time scales sufficient to track both solar cycle as well as other major variations.

美国宇航局的星际测绘和加速探测器(IMAP)是一艘绕L1轨道运行的旋转航天器,它正在对热粒子、pickup粒子和高能粒子进行现场观测,同时通过测量中和的高能离子在该区域与星际中性粒子交换电荷时产生的高能中性原子(ENA)的辐射,远程遥感这些粒子在外层日球层的影响。IMAP-Ultra仪器(Ultra)是IMAP上的三个ENA成像仪之一,用于测量日鞘内外产生的最高能量的ENA发射。Ultra由两个传感器组成,一个传感器与航天器自转轴成90°角(Ultra90),另一个传感器与航天器自转轴成45°角(Ultra45)。Ultra被设计和优化为测量5 - 40 keV的氢(H) ENAs,但传感器已被证明可以测量~ 3 - 300 keV的氢。此外,Ultra的大视场(~ 96°× 120°)能够在≥10 keV的氢原子上实现角分辨率≤6°FWHM。Ultra提供高空间分辨率,完整的日球层图,探测ENAs空间分布的变化,在足够的时间尺度上跟踪太阳周期以及其他主要变化。
{"title":"The IMAP-Ultra Energetic Neutral Atom (ENA) Imager.","authors":"Matina Gkioulidou, G B Clark, D G Mitchell, A R Dupont, K L Anderson, S Begley, M Bzowski, E R Christian, C E Cook, A B Crew, M J Cully, R DeMajistre, T J Diaz, R J Drexler, N T Dutton, C J Gingrich, J R Hayes, C M Huber, J Hutcheson, S E Jaskulek, P Kollmann, M T LeBlanc, J Lees, D J McComas, K S Nelson, C W Parker, D B Reisenfeld, E A Rollend, C E Schlemm, N A Schwadron, R Verrill, J Yen, J Yin","doi":"10.1007/s11214-025-01256-5","DOIUrl":"10.1007/s11214-025-01256-5","url":null,"abstract":"<p><p>NASA's Interstellar Mapping and Acceleration Probe (IMAP), a spinner spacecraft in orbit around L1, is taking in situ observations of thermal, pickup, and energetic particles, while simultaneously remotely sensing the effects that these particles have in the outer heliosphere, by measuring Energetic Neutral Atoms (ENA) emissions produced by neutralized energetic ions when they charge exchange with interstellar neutral particles in that region. The IMAP-Ultra instrument (Ultra), one of the three ENA imagers on IMAP, measures the emission of the highest energy ENAs produced in the heliosheath and beyond. Ultra consists of two sensors with one sensor angled at 90° (Ultra<sub>90</sub>) and the other at 45° (Ultra<sub>45</sub>) from the spacecraft's spin axis. Ultra was designed and optimized to measure hydrogen (H) ENAs from 5 - 40 keV, but the sensors have been demonstrated to measure H from ∼3 - 300 keV. Additionally, Ultra's large ∼96° × 120° field of view (FoV) is capable of achieving angular resolutions ≤ 6° FWHM for ≥ 10 keV for H ENAs. Ultra provides high spatial resolution, full heliosphere maps, detecting changes in the spatial distribution of ENAs, on time scales sufficient to track both solar cycle as well as other major variations.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"222 1","pages":"4"},"PeriodicalIF":7.4,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12738616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145850732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Reconnection in Space: An Introduction. 空间磁重联:导论。
IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-02-12 DOI: 10.1007/s11214-025-01145-x
J L Burch, Rumi Nakamura

An International Space Science Institute (ISSI) workshop was convened to assess recent rapid advances in studies of magnetic reconnection made possible by the NASA Magnetospheric Multiscale (MMS) mission and to place them in context with concurrent advances in solar physics by the Parker Solar Probe, astrophysics, planetary science and laboratory plasma physics. The review papers resulting from this study focus primarily on results obtained by MMS, and these papers are complemented by reports of advances in magnetic reconnection physics in these other plasma environments. This paper introduces the topical collection "Magnetic Reconnection: Explosive Energy Conversion in Space Plasmas", in particular introducing the new capabilities of the MMS mission used in majority of the articles in the collection and briefly summarizing the advances obtained from MMS.

国际空间科学研究所(ISSI)召开了一次研讨会,以评估美国宇航局磁层多尺度(MMS)任务使磁重联研究取得的最新快速进展,并将其与帕克太阳探测器、天体物理学、行星科学和实验室等离子体物理学在太阳物理学方面同时取得的进展联系起来。本研究的综述论文主要集中在MMS获得的结果上,这些论文补充了在这些其他等离子体环境中磁重联物理的进展报告。本文介绍了专题文集“磁重联:空间等离子体中的爆炸能量转换”,特别介绍了文集中大多数文章中使用的MMS任务的新功能,并简要总结了MMS的进展。
{"title":"Magnetic Reconnection in Space: An Introduction.","authors":"J L Burch, Rumi Nakamura","doi":"10.1007/s11214-025-01145-x","DOIUrl":"10.1007/s11214-025-01145-x","url":null,"abstract":"<p><p>An International Space Science Institute (ISSI) workshop was convened to assess recent rapid advances in studies of magnetic reconnection made possible by the NASA Magnetospheric Multiscale (MMS) mission and to place them in context with concurrent advances in solar physics by the Parker Solar Probe, astrophysics, planetary science and laboratory plasma physics. The review papers resulting from this study focus primarily on results obtained by MMS, and these papers are complemented by reports of advances in magnetic reconnection physics in these other plasma environments. This paper introduces the topical collection \"Magnetic Reconnection: Explosive Energy Conversion in Space Plasmas\", in particular introducing the new capabilities of the MMS mission used in majority of the articles in the collection and briefly summarizing the advances obtained from MMS.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 1","pages":"19"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Space Science Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1