Application of Artificial Neural Network for Internal Combustion Engines

None Eslam Sayed, Nouby M. Ghazaly
{"title":"Application of Artificial Neural Network for Internal Combustion Engines","authors":"None Eslam Sayed, Nouby M. Ghazaly","doi":"10.52783/kjcs.v1i1.223","DOIUrl":null,"url":null,"abstract":"In this research, acoustic emission (AE) technology is used to detect faults in the valves in the internal combustion engine, where the cylinder head of a spark ignition engine was used as an experimental setup. The study was conducted on three types of valve damage ((clearance, half-notch, and notch) on valve leakage. The study proved that the acoustic emission technique is an effective method in detecting damage to valves in both the time and frequency domain. The neural network was trained based on time domain analysis using AE parametric features (, number, absolute AE power, maximum signal amplitude, and average signal level).","PeriodicalId":484425,"journal":{"name":"Kuwait Journal of Computer Science","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/kjcs.v1i1.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, acoustic emission (AE) technology is used to detect faults in the valves in the internal combustion engine, where the cylinder head of a spark ignition engine was used as an experimental setup. The study was conducted on three types of valve damage ((clearance, half-notch, and notch) on valve leakage. The study proved that the acoustic emission technique is an effective method in detecting damage to valves in both the time and frequency domain. The neural network was trained based on time domain analysis using AE parametric features (, number, absolute AE power, maximum signal amplitude, and average signal level).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络在内燃机中的应用
本研究以火花点火发动机气缸盖为实验装置,采用声发射技术检测内燃机气门故障。研究了三种类型的气门损伤(间隙、半缺口和缺口)对气门泄漏的影响。研究表明声发射技术在时间和频率两方面都是一种有效的阀门损伤检测方法。利用声发射参数特征(声发射数、绝对声发射功率、最大信号幅值和平均信号电平)对神经网络进行时域分析训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Artificial Neural Network for Internal Combustion Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1