{"title":"Corpus Generation to Develop Amharic Morphological Segmenter","authors":"Terefe Feyisa, Seble Hailu","doi":"10.14569/ijacsa.2023.01409116","DOIUrl":null,"url":null,"abstract":"Morphological segmenter is an important component in Amharic natural language processing systems. Despite this fact, Amharic lacks large amount of morphologically segmented corpus. Large amount of corpus is often a requirement to develop neural network-based language technologies. This paper presents an alternative method to generate large amount of morph-segmented corpus for Amharic language. First, a relatively small (138,400 words) morphologically annotated Amharic seed-corpus is manually prepared. The annotation enables to identify prefixes, stem, and suffixes of a given word. Second, a supervised approach is used to create a conditional random field-based seed-model (on the seed-corpus). Applying the seed-model (an unsupervised technique on a large unsegmented raw Amharic words) for prediction, a large corpus size (3,777,283) of segmented words are automatically generated. Third, the newly generated corpus is used to train an Amharic morphological segmenter (based on a supervised neural sequence-to-sequence (seq2seq) approach using character embeddings). Using the seq2seq method, an F-score of 98.65% was measured. Results show an agreement with previous efforts for Arabic language. The work presented here has profound implications for future studies of Ethiopian language technologies and may one day help solve the problem of the digital-divide between resource-rich and under-resourced languages.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.01409116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Morphological segmenter is an important component in Amharic natural language processing systems. Despite this fact, Amharic lacks large amount of morphologically segmented corpus. Large amount of corpus is often a requirement to develop neural network-based language technologies. This paper presents an alternative method to generate large amount of morph-segmented corpus for Amharic language. First, a relatively small (138,400 words) morphologically annotated Amharic seed-corpus is manually prepared. The annotation enables to identify prefixes, stem, and suffixes of a given word. Second, a supervised approach is used to create a conditional random field-based seed-model (on the seed-corpus). Applying the seed-model (an unsupervised technique on a large unsegmented raw Amharic words) for prediction, a large corpus size (3,777,283) of segmented words are automatically generated. Third, the newly generated corpus is used to train an Amharic morphological segmenter (based on a supervised neural sequence-to-sequence (seq2seq) approach using character embeddings). Using the seq2seq method, an F-score of 98.65% was measured. Results show an agreement with previous efforts for Arabic language. The work presented here has profound implications for future studies of Ethiopian language technologies and may one day help solve the problem of the digital-divide between resource-rich and under-resourced languages.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications