Structure learning via unstructured kernel-based M-estimation

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2023-01-01 DOI:10.1214/23-ejs2153
Xin He, Yeheng Ge, Xingdong Feng
{"title":"Structure learning via unstructured kernel-based M-estimation","authors":"Xin He, Yeheng Ge, Xingdong Feng","doi":"10.1214/23-ejs2153","DOIUrl":null,"url":null,"abstract":"In statistical learning, identifying underlying structures of true target functions based on observed data plays a crucial role to facilitate subsequent modeling and analysis. Unlike most of those existing methods that focus on some specific settings under certain model assumptions, a general and novel framework is proposed for recovering the true structures of target functions by using unstructured M-estimation in a reproducing kernel Hilbert space (RKHS) in this paper. This framework is inspired by the fact that gradient functions can be employed as a valid tool to learn underlying structures, including sparse learning, interaction selection and model identification, and it is easy to implement by taking advantage of some nice properties of the RKHS. More importantly, it admits a wide range of loss functions, and thus includes many commonly used methods as special cases, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification, which is also computationally efficient by solving convex optimization tasks. The asymptotic results of the proposed framework are established within a rich family of loss functions without any explicit model specifications. The superior performance of the proposed framework is also demonstrated by a variety of simulated examples and a real case study.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"43 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2153","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In statistical learning, identifying underlying structures of true target functions based on observed data plays a crucial role to facilitate subsequent modeling and analysis. Unlike most of those existing methods that focus on some specific settings under certain model assumptions, a general and novel framework is proposed for recovering the true structures of target functions by using unstructured M-estimation in a reproducing kernel Hilbert space (RKHS) in this paper. This framework is inspired by the fact that gradient functions can be employed as a valid tool to learn underlying structures, including sparse learning, interaction selection and model identification, and it is easy to implement by taking advantage of some nice properties of the RKHS. More importantly, it admits a wide range of loss functions, and thus includes many commonly used methods as special cases, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification, which is also computationally efficient by solving convex optimization tasks. The asymptotic results of the proposed framework are established within a rich family of loss functions without any explicit model specifications. The superior performance of the proposed framework is also demonstrated by a variety of simulated examples and a real case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非结构化核的m估计的结构学习
在统计学习中,基于观测数据识别真实目标函数的底层结构对于后续建模和分析至关重要。与现有的大多数方法不同,本文提出了一种利用再现核希尔伯特空间(RKHS)中的非结构化m估计来恢复目标函数真实结构的通用框架。该框架的灵感来自于梯度函数可以作为一种有效的工具来学习底层结构,包括稀疏学习、交互选择和模型识别,并且通过利用RKHS的一些很好的特性很容易实现。更重要的是,它允许广泛的损失函数,因此包括许多常用的方法作为特殊情况,如均值回归、分位数回归、基于似然的分类、基于边缘的分类,这些方法通过求解凸优化任务也具有计算效率。该框架的渐近结果建立在一个丰富的损失函数族中,不需要任何显式的模型规范。通过各种仿真实例和实际案例研究,证明了该框架的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1