Lori Rubino-Hare, Brooke A. Whitworth, Francis Boateng, Nena Bloom
{"title":"The impact of Geospatial Inquiry lessons on student interest in science and technology careers","authors":"Lori Rubino-Hare, Brooke A. Whitworth, Francis Boateng, Nena Bloom","doi":"10.1002/tea.21904","DOIUrl":null,"url":null,"abstract":"<p>Advances in online geospatial technologies (GST) have expanded access to K-12 classrooms which has implications for the support teachers require to effectively integrate GSTs to promote learning. Previous studies have shown the impact of GST-integrated lessons on student engagement, spatial thinking skills, and/or content knowledge; however, most of these studies have been small in scope and scale and frequently focus on the affordances of the technology, without addressing the context of the implementation and student characteristics for whom GST is most impactful. We attempt to address some of these gaps. Our program scaled an effective GST-focused professional learning and development program to a national audience through a facilitator development model. This paper explores the student characteristics and lesson factors that resulted in student interest in science and technology and careers in those fields. After teaching a Geospatial Inquiry lesson created during a teacher workshop, teachers (<i>n</i> = 82) submitted the lessons and surveys on the implementation of Geospatial Inquiry lessons. The implementation surveys and lessons were scored for alignment to the principles of high-quality Geospatial Inquiry. Students (<i>n</i> = 1924) completed a post-lesson retrospective survey and indicated the extent to which their perceptions and attitudes toward science and technology changed because of the lesson. Results indicate that teacher GST performance is associated with increases in student outcomes. Students with previous exposure to science activities were more likely to have increased interest and excitement in science and careers in science but decreased interest in technology careers. Students who had previous exposure to technology activities had increased interest and excitement in technology and careers in technology but decreased interest in science careers. Geospatial Inquiry lessons also had a significant impact on students who are traditionally underrepresented in STEM fields. After participating in the lessons, students who identify as female reported higher engagement and interest in science and higher interest in science careers. Students who identified as Black or Hispanic also reported higher interest and excitement in science and technology, and students who identified as Black reported marginally higher interest in science careers.</p>","PeriodicalId":48369,"journal":{"name":"Journal of Research in Science Teaching","volume":"61 2","pages":"419-456"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tea.21904","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Science Teaching","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tea.21904","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in online geospatial technologies (GST) have expanded access to K-12 classrooms which has implications for the support teachers require to effectively integrate GSTs to promote learning. Previous studies have shown the impact of GST-integrated lessons on student engagement, spatial thinking skills, and/or content knowledge; however, most of these studies have been small in scope and scale and frequently focus on the affordances of the technology, without addressing the context of the implementation and student characteristics for whom GST is most impactful. We attempt to address some of these gaps. Our program scaled an effective GST-focused professional learning and development program to a national audience through a facilitator development model. This paper explores the student characteristics and lesson factors that resulted in student interest in science and technology and careers in those fields. After teaching a Geospatial Inquiry lesson created during a teacher workshop, teachers (n = 82) submitted the lessons and surveys on the implementation of Geospatial Inquiry lessons. The implementation surveys and lessons were scored for alignment to the principles of high-quality Geospatial Inquiry. Students (n = 1924) completed a post-lesson retrospective survey and indicated the extent to which their perceptions and attitudes toward science and technology changed because of the lesson. Results indicate that teacher GST performance is associated with increases in student outcomes. Students with previous exposure to science activities were more likely to have increased interest and excitement in science and careers in science but decreased interest in technology careers. Students who had previous exposure to technology activities had increased interest and excitement in technology and careers in technology but decreased interest in science careers. Geospatial Inquiry lessons also had a significant impact on students who are traditionally underrepresented in STEM fields. After participating in the lessons, students who identify as female reported higher engagement and interest in science and higher interest in science careers. Students who identified as Black or Hispanic also reported higher interest and excitement in science and technology, and students who identified as Black reported marginally higher interest in science careers.
期刊介绍:
Journal of Research in Science Teaching, the official journal of NARST: A Worldwide Organization for Improving Science Teaching and Learning Through Research, publishes reports for science education researchers and practitioners on issues of science teaching and learning and science education policy. Scholarly manuscripts within the domain of the Journal of Research in Science Teaching include, but are not limited to, investigations employing qualitative, ethnographic, historical, survey, philosophical, case study research, quantitative, experimental, quasi-experimental, data mining, and data analytics approaches; position papers; policy perspectives; critical reviews of the literature; and comments and criticism.