Emily J. Morey, Kevin Galvin, Thomas Riley, R. Eddie Wilson
{"title":"Application of soft systems methodology to frame the challenges of integrating autonomous trains within a legacy rail operating environment","authors":"Emily J. Morey, Kevin Galvin, Thomas Riley, R. Eddie Wilson","doi":"10.1002/sys.21723","DOIUrl":null,"url":null,"abstract":"Abstract Increased demand on rail, due to climate initiatives and passenger numbers, places significant pressure on existing railway operations; specifically on capacity, operational flexibility, and network robustness. These pressures are exacerbated by constraints, which prevent the construction of new track and infrastructure. This results in the need to use existing infrastructure and operating processes. One proposed solution is digitalization, which results in autonomous rail, where automated and connected intelligent transport systems facilitate smart traffic management. However, this generates the challenge of integrating autonomous trains and their associated technologies with existing infrastructure and operations. To understand this issue from an enterprise level, this paper has applied Brian Wilson's Soft Systems Methodology (a variation of Checkland's methodology) to the problem situation. This methodology explores and investigates the existing rail system in Great Britain (UK less Northern Ireland) and its stakeholders. The paper aims to propose a solution into how to transform the legacy system into one which incorporates autonomous operations and ultimately becomes fully autonomous. It culminates in a series of models that are relevant to those with a legitimate interest in the system. The models identify the activities required to analyze whether autonomy is worthwhile and if it is, how to successfully integrate it with legacy operations. Additionally, the models provide the basis for which a formal stakeholder analysis can take place.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sys.21723","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Increased demand on rail, due to climate initiatives and passenger numbers, places significant pressure on existing railway operations; specifically on capacity, operational flexibility, and network robustness. These pressures are exacerbated by constraints, which prevent the construction of new track and infrastructure. This results in the need to use existing infrastructure and operating processes. One proposed solution is digitalization, which results in autonomous rail, where automated and connected intelligent transport systems facilitate smart traffic management. However, this generates the challenge of integrating autonomous trains and their associated technologies with existing infrastructure and operations. To understand this issue from an enterprise level, this paper has applied Brian Wilson's Soft Systems Methodology (a variation of Checkland's methodology) to the problem situation. This methodology explores and investigates the existing rail system in Great Britain (UK less Northern Ireland) and its stakeholders. The paper aims to propose a solution into how to transform the legacy system into one which incorporates autonomous operations and ultimately becomes fully autonomous. It culminates in a series of models that are relevant to those with a legitimate interest in the system. The models identify the activities required to analyze whether autonomy is worthwhile and if it is, how to successfully integrate it with legacy operations. Additionally, the models provide the basis for which a formal stakeholder analysis can take place.
期刊介绍:
Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle.
Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.