Molecular engineering of self-assembled monolayers for highly utilized Zn anodes

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-10-19 DOI:10.1016/j.esci.2023.100205
Lei Zhang , Jin Xiao , Xilin Xiao , Wenli Xin , Yaheng Geng , Zichao Yan , Zhiqiang Zhu
{"title":"Molecular engineering of self-assembled monolayers for highly utilized Zn anodes","authors":"Lei Zhang ,&nbsp;Jin Xiao ,&nbsp;Xilin Xiao ,&nbsp;Wenli Xin ,&nbsp;Yaheng Geng ,&nbsp;Zichao Yan ,&nbsp;Zhiqiang Zhu","doi":"10.1016/j.esci.2023.100205","DOIUrl":null,"url":null,"abstract":"<div><p>Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries. Here, we rationally design a zincophilic short-chain aromatic molecule, 4-mercaptopyridine (4Mpy), to construct self-assembled monolayers (SAMs) on a copper substrate to achieve highly utilized Zn anodes. We reveal that 4Mpy could be firmly bound on the Cu substrate via Cu–S bond to form compact and uniform SAMs, which could effectively isolate the water on the electrode surface and thus eliminate the water-related side reactions. In addition, the short-chain aromatic ring structure of 4Mpy could not only ensure the ordered arrangement of zincophilic pyridine N but also facilitate charge transfer, thus enabling uniform and rapid Zn deposition. Consequently, the Zn/4Mpy/Cu electrode not only enables the symmetric cell to stably cycle for over 180 ​h at 10 ​mA ​cm<sup>−2</sup> under a high depth-of-discharge of 90%, but also allows the MnO<sub>2</sub>-paired pouch cell to survive for 100 cycles under a high Zn utilization rate of 78.8%. An anode-free 4Mpy/Cu||graphite cell also operates for 150 cycles without obvious capacity fading at 0.1 ​A ​g<sup>−1</sup>. This control of interfacial chemistry via SAMs to achieve high utilization rates of metal anodes provides a new paradigm for developing high-energy metal-based batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100205"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001507/pdfft?md5=11125af729dee09f1a1add11d8fdf975&pid=1-s2.0-S2667141723001507-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries. Here, we rationally design a zincophilic short-chain aromatic molecule, 4-mercaptopyridine (4Mpy), to construct self-assembled monolayers (SAMs) on a copper substrate to achieve highly utilized Zn anodes. We reveal that 4Mpy could be firmly bound on the Cu substrate via Cu–S bond to form compact and uniform SAMs, which could effectively isolate the water on the electrode surface and thus eliminate the water-related side reactions. In addition, the short-chain aromatic ring structure of 4Mpy could not only ensure the ordered arrangement of zincophilic pyridine N but also facilitate charge transfer, thus enabling uniform and rapid Zn deposition. Consequently, the Zn/4Mpy/Cu electrode not only enables the symmetric cell to stably cycle for over 180 ​h at 10 ​mA ​cm−2 under a high depth-of-discharge of 90%, but also allows the MnO2-paired pouch cell to survive for 100 cycles under a high Zn utilization rate of 78.8%. An anode-free 4Mpy/Cu||graphite cell also operates for 150 cycles without obvious capacity fading at 0.1 ​A ​g−1. This control of interfacial chemistry via SAMs to achieve high utilization rates of metal anodes provides a new paradigm for developing high-energy metal-based batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高利用率锌阳极的自组装单层分子工程学
在高利用率下稳定锌阳极备受赞誉,但在水性锌电池中却极具挑战性。在这里,我们合理地设计了一种亲锌短链芳香族分子--4-巯基吡啶(4Mpy),在铜基底上构建自组装单层(SAM),以实现高利用率的锌阳极。我们发现,4Mpy 可通过 Cu-S 键牢固地结合在铜基板上,形成紧凑均匀的 SAM,从而有效隔离电极表面的水,消除与水相关的副反应。此外,4Mpy 的短链芳环结构不仅能确保亲锌吡啶 N 的有序排列,还能促进电荷转移,从而实现均匀、快速的锌沉积。因此,Zn/4Mpy/Cu 电极不仅能使对称电池在 10 mA cm-2 的条件下以 90% 的高放电深度稳定循环超过 180 小时,还能使 MnO2 对袋电池在 78.8% 的高锌利用率下存活 100 个循环。无阳极的 4Mpy/Cu||| 石墨电池也能在 0.1 A g-1 的条件下运行 150 个循环,且无明显的容量衰减。这种通过 SAMs 控制界面化学以实现金属阳极高利用率的方法为开发高能量金属基电池提供了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1