The Open Landslide Project (OLP), a New Inventory of Shallow Landslides for Susceptibility Models: The Autumn 2019 Extreme Rainfall Event in the Langhe-Monferrato Region (Northwestern Italy)
Michele Licata, Victor Buleo Tebar, Francesco Seitone, Giandomenico Fubelli
{"title":"The Open Landslide Project (OLP), a New Inventory of Shallow Landslides for Susceptibility Models: The Autumn 2019 Extreme Rainfall Event in the Langhe-Monferrato Region (Northwestern Italy)","authors":"Michele Licata, Victor Buleo Tebar, Francesco Seitone, Giandomenico Fubelli","doi":"10.3390/geosciences13100289","DOIUrl":null,"url":null,"abstract":"Landslides triggered by heavy rainfall pose significant threats to human settlements and infrastructure in temperate and equatorial climate regions. This study focuses on the development of the Open Landslide Project (OLP), an open source landslide inventory aimed at facilitating geostatistical analyses and landslide risk management. Using a multidisciplinary approach and open source, multisatellite imagery data, more than 3000 landslides triggered by the extreme rainfall of autumn 2019 in northwestern Italy were systematically mapped. The inventory creation process followed well-defined criteria and underwent rigorous validation to ensure accuracy and reliability. The dataset’s suitability was confirmed through multivariate correlation and Double Pareto probably density function. The OLP inventory effectiveness in assessing landslide risks was proved by the development of a landslide susceptibility model using binary logistic regression. The analysis of rainfall and lithology revealed that regions with lower rainfall levels experienced a higher occurrence of landslides compared to areas with higher peak rainfall. This was attributed to the response of the lithological composition to rainfalls. The findings of this research contribute to the understanding and management of landslide risks in anthropized climate regions. The OLP has proven to be a valuable resource for future geostatistical analysis.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"54 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences13100289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Landslides triggered by heavy rainfall pose significant threats to human settlements and infrastructure in temperate and equatorial climate regions. This study focuses on the development of the Open Landslide Project (OLP), an open source landslide inventory aimed at facilitating geostatistical analyses and landslide risk management. Using a multidisciplinary approach and open source, multisatellite imagery data, more than 3000 landslides triggered by the extreme rainfall of autumn 2019 in northwestern Italy were systematically mapped. The inventory creation process followed well-defined criteria and underwent rigorous validation to ensure accuracy and reliability. The dataset’s suitability was confirmed through multivariate correlation and Double Pareto probably density function. The OLP inventory effectiveness in assessing landslide risks was proved by the development of a landslide susceptibility model using binary logistic regression. The analysis of rainfall and lithology revealed that regions with lower rainfall levels experienced a higher occurrence of landslides compared to areas with higher peak rainfall. This was attributed to the response of the lithological composition to rainfalls. The findings of this research contribute to the understanding and management of landslide risks in anthropized climate regions. The OLP has proven to be a valuable resource for future geostatistical analysis.