Influences of 3D printing parameters on the mechanical properties of wood PLA filament: an experimental analysis by Taguchi method

IF 4.4 Q2 ENGINEERING, MANUFACTURING Progress in Additive Manufacturing Pub Date : 2023-10-12 DOI:10.1007/s40964-023-00516-6
Jakiya Sultana, Md Mazedur Rahman, Yanen Wang, Ammar Ahmed, Chen Xiaohu
{"title":"Influences of 3D printing parameters on the mechanical properties of wood PLA filament: an experimental analysis by Taguchi method","authors":"Jakiya Sultana, Md Mazedur Rahman, Yanen Wang, Ammar Ahmed, Chen Xiaohu","doi":"10.1007/s40964-023-00516-6","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the effects of 3D printing parameters on the mechanical properties (predominantly tensile properties) of a commercial polylactic acid-based wood fiber composite material known as wood filament. The influence of printing parameters, including layer thickness, infill density, printing speed, and nozzle temperature on the mechanical properties, is studied, and the design of the experiment (DOE) is made through Taguchi L 9 orthogonal array. The specimens for the tensile test are fabricated by the material extrusion (MEX) 3D printer, which is also known as fused deposition modeling (FDM) or fused filament fabrication (FFF). After conducting the tensile test, this research considers four significant outcomes: tensile strength, maximum load, elastic modulus, and elongation at break. Further analysis of the obtained results from mechanical testing is performed through analysis of variance (ANOVA) to determine the significance of each parameter on the mechanical properties. Moreover, prediction and optimization are conducted to verify the obtained results from the DOE. Furthermore, scanning electronic microscopy (SEM) is used to analyze the fracture zones, cracks, voids, and fiber/matrix adhesion of the FDM fabricated parts which demonstrates that the lower layer thickness provides better adhesion and fewer voids between successive layers and thus exhibits better mechanical performance. Graphical abstract","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"8 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-023-00516-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study investigates the effects of 3D printing parameters on the mechanical properties (predominantly tensile properties) of a commercial polylactic acid-based wood fiber composite material known as wood filament. The influence of printing parameters, including layer thickness, infill density, printing speed, and nozzle temperature on the mechanical properties, is studied, and the design of the experiment (DOE) is made through Taguchi L 9 orthogonal array. The specimens for the tensile test are fabricated by the material extrusion (MEX) 3D printer, which is also known as fused deposition modeling (FDM) or fused filament fabrication (FFF). After conducting the tensile test, this research considers four significant outcomes: tensile strength, maximum load, elastic modulus, and elongation at break. Further analysis of the obtained results from mechanical testing is performed through analysis of variance (ANOVA) to determine the significance of each parameter on the mechanical properties. Moreover, prediction and optimization are conducted to verify the obtained results from the DOE. Furthermore, scanning electronic microscopy (SEM) is used to analyze the fracture zones, cracks, voids, and fiber/matrix adhesion of the FDM fabricated parts which demonstrates that the lower layer thickness provides better adhesion and fewer voids between successive layers and thus exhibits better mechanical performance. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D打印参数对木质PLA长丝力学性能影响的田口法实验分析
摘要:本研究探讨了3D打印参数对商用聚乳酸基木纤维复合材料木长丝的机械性能(主要是拉伸性能)的影响。研究了打印参数(层厚、填充密度、打印速度、喷嘴温度)对材料力学性能的影响,并通过田口l9正交阵列进行了实验设计(DOE)。拉伸试验的样品由材料挤压(MEX) 3D打印机制造,也称为熔融沉积建模(FDM)或熔融长丝制造(FFF)。在进行拉伸试验后,本研究考虑了抗拉强度、最大载荷、弹性模量和断裂伸长率四个重要结果。通过方差分析(ANOVA)对从力学测试中获得的结果进行进一步分析,以确定每个参数对力学性能的重要性。并对DOE得到的结果进行了预测和优化验证。此外,利用扫描电子显微镜(SEM)分析了FDM制件的断口区、裂纹、空隙和纤维/基体粘附性,结果表明,较低的层厚提供了更好的粘附性和更少的连续层之间的空隙,从而表现出更好的力学性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Additive Manufacturing
Progress in Additive Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
7.20
自引率
0.00%
发文量
113
期刊介绍: Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive    methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance    applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts
期刊最新文献
A 4D printed self-assembling PEGDA microscaffold fabricated by digital light processing for arthroscopic articular cartilage tissue engineering. Impact of printing parameters on in-plane tensile and fracture toughness of fused filament fabricated PEEK A machine learning methodology for porosity classification and process map prediction in laser powder bed fusion Setting of L-PBF parameters for obtaining high density and mechanical performance of AISI 316L and 16MnCr5 alloys with fine laser spot size 4D printing of shape memory polymer with continuous carbon fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1