Energy Saving Optimization of Commercial Complex Atrium Roof with Resilient Ventilation Using Machine Learning

IF 7 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Smart Cities Pub Date : 2023-09-11 DOI:10.3390/smartcities6050108
Ao Xu, Ruinan Zhang, Jiahui Yu, Yu Dong
{"title":"Energy Saving Optimization of Commercial Complex Atrium Roof with Resilient Ventilation Using Machine Learning","authors":"Ao Xu, Ruinan Zhang, Jiahui Yu, Yu Dong","doi":"10.3390/smartcities6050108","DOIUrl":null,"url":null,"abstract":"Carbon-neutral architectural design focuses on rationally utilizing the building’s surroundings to reduce its environmental impact. Resilient ventilation systems, developed according to the thermal comfort requirements of building energy-saving research, have few applications. We studied the Jin-an Shopping Mall in Harbin and established the middle point height (h), middle point horizontal location (d), roof angle (α), and exposure to floor ratio (k) as the morphological parameters of the atrium. Using computational fluid dynamics (CFD), the mean radiant temperature (MRT), and the universal thermal climate index calculations (UTCI), this program was set to switch off air conditioning when the resilient ventilation met the thermal comfort requirement to achieve energy savings. The energy-saving efficiency (U) was calculated based on the energy consumption of the original model, and U could reach 7.34–9.64% according to the simulation and prediction. This study provides methods and a theoretical basis for renovating other commercial complexes to improve comfort and control energy consumption.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":"34 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/smartcities6050108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-neutral architectural design focuses on rationally utilizing the building’s surroundings to reduce its environmental impact. Resilient ventilation systems, developed according to the thermal comfort requirements of building energy-saving research, have few applications. We studied the Jin-an Shopping Mall in Harbin and established the middle point height (h), middle point horizontal location (d), roof angle (α), and exposure to floor ratio (k) as the morphological parameters of the atrium. Using computational fluid dynamics (CFD), the mean radiant temperature (MRT), and the universal thermal climate index calculations (UTCI), this program was set to switch off air conditioning when the resilient ventilation met the thermal comfort requirement to achieve energy savings. The energy-saving efficiency (U) was calculated based on the energy consumption of the original model, and U could reach 7.34–9.64% according to the simulation and prediction. This study provides methods and a theoretical basis for renovating other commercial complexes to improve comfort and control energy consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的弹性通风商业综合体中庭屋顶节能优化
碳中性建筑设计注重合理利用建筑周边环境,减少对环境的影响。弹性通风系统是根据建筑节能研究对热舒适的要求而发展起来的,目前应用较少。我们以哈尔滨金安购物中心为研究对象,建立了中点高度(h)、中点水平位置(d)、屋顶角度(α)和楼面暴露比(k)作为中庭的形态参数。通过计算流体力学(CFD)、平均辐射温度(MRT)和通用热气候指数(UTCI)计算,该方案设置在弹性通风满足热舒适要求时关闭空调,以达到节能目的。在原模型能耗基础上计算节能效率U,仿真预测U可达7.34 ~ 9.64%。本研究为其他商业综合体的改造提供了方法和理论依据,以提高舒适性和控制能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Cities
Smart Cities Multiple-
CiteScore
11.20
自引率
6.20%
发文量
0
审稿时长
11 weeks
期刊介绍: Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.
期刊最新文献
Vision-Based Object Localization and Classification for Electric Vehicle Driving Assistance Smart Grid Resilience for Grid-Connected PV and Protection Systems under Cyber Threats Tech Giants’ Responsible Innovation and Technology Strategy: An International Policy Review Grid Impact of Wastewater Resource Recovery Facilities-Based Community Microgrids Development of a Microservice-Based Storm Sewer Simulation System with IoT Devices for Early Warning in Urban Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1