{"title":"Investigation on the Mechanical Properties and Shape Memory Effect of Landing Buffer Structure Based on NiTi Alloy Printing","authors":"Zhenglei Yu, Renlong Xin, Zezhou Xu, Yining Zhu, Xiaolong Zhang, Shijie Hao, Zhihui Zhang, Ping Liang","doi":"10.1186/s10033-023-00898-2","DOIUrl":null,"url":null,"abstract":"Abstract With the deepening of human research on deep space exploration, our research on the soft landing methods of landers has gradually deepened. Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution. Based on the energy-absorbing structure of the leg of the interstellar lander, this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus . The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying, but also can easily withstand the huge counter-impact force. The predatory feet structure of the Odontodactylus scyllarus , like a symmetrical cone, shows excellent rigidity and energy absorption capacity. Inspired by this discovery, we used SLM technology to design and manufacture two nickel-titanium samples, which respectively show high elasticity, shape memory, and get better energy absorption capacity. This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00898-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the deepening of human research on deep space exploration, our research on the soft landing methods of landers has gradually deepened. Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution. Based on the energy-absorbing structure of the leg of the interstellar lander, this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus . The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying, but also can easily withstand the huge counter-impact force. The predatory feet structure of the Odontodactylus scyllarus , like a symmetrical cone, shows excellent rigidity and energy absorption capacity. Inspired by this discovery, we used SLM technology to design and manufacture two nickel-titanium samples, which respectively show high elasticity, shape memory, and get better energy absorption capacity. This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.