Intelligent System to Transformer Slang Words into Formal Words

Ahmed Abdulstar Ibrahim, Ban Shareef Mustafa
{"title":"Intelligent System to Transformer Slang Words into Formal Words","authors":"Ahmed Abdulstar Ibrahim, Ban Shareef Mustafa","doi":"10.56286/ntujet.v2i2.689","DOIUrl":null,"url":null,"abstract":"Understanding and utilizing informal words not recognized in standard dictionaries poses challenges for users. These words are specific to certain communities, hindering comprehension for those outside. Natural language processing tasks, like translation and summarization, struggle with informal vocabulary and local dialects. Although existing models can translate informal words, comprehensive solutions are elusive due to regional and contextual variations. Developing natural language processing models that consider informal words and local dialects is crucial for future research. This paper presents an updated dataset of informal English words tailored to current usage. Multiple models from the Transformer core library on the Hugging Face platform were trained and evaluated, with the facebook/bart-base model demonstrating high accuracy (training data loss: 0.05299). Continued research and innovation in this field are imperative for effective cross-cultural and intercommunity communication","PeriodicalId":500723,"journal":{"name":"NTU Journal of Engineering and Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56286/ntujet.v2i2.689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and utilizing informal words not recognized in standard dictionaries poses challenges for users. These words are specific to certain communities, hindering comprehension for those outside. Natural language processing tasks, like translation and summarization, struggle with informal vocabulary and local dialects. Although existing models can translate informal words, comprehensive solutions are elusive due to regional and contextual variations. Developing natural language processing models that consider informal words and local dialects is crucial for future research. This paper presents an updated dataset of informal English words tailored to current usage. Multiple models from the Transformer core library on the Hugging Face platform were trained and evaluated, with the facebook/bart-base model demonstrating high accuracy (training data loss: 0.05299). Continued research and innovation in this field are imperative for effective cross-cultural and intercommunity communication
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将俚语转化为正式词汇的智能系统
理解和使用标准词典中不认识的非正式词汇对用户来说是一个挑战。这些词是特定于某些社区的,阻碍了外界的理解。自然语言处理任务,如翻译和总结,与非正式词汇和当地方言作斗争。虽然现有的模型可以翻译非正式词汇,但由于区域和上下文的差异,全面的解决方案难以捉摸。开发考虑非正式词和当地方言的自然语言处理模型对未来的研究至关重要。本文提出了一个更新的非正式英语单词数据集,以适应当前的用法。对来自hug Face平台上Transformer核心库的多个模型进行了训练和评估,facebook/bart-base模型显示出较高的准确性(训练数据丢失:0.05299)。在这一领域的持续研究和创新是有效的跨文化和跨社区交流的必要条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Location And Size of The STATCOM to Enhance The Power System Stability Intelligent System to Transformer Slang Words into Formal Words DESIGN OF A SCADA SYSTEM FOR A SOLAR PHOTOVOLTAIC POWER PLANT Skin Cancer Classification: A Transfer Learning Approach Using Inception-v3 Fog Computing: A Comprehensive Review of Architectures, Applications, and Security Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1