Controllable growth of wafer-scale two-dimensional WS2 with outstanding optoelectronic properties

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2023-10-17 DOI:10.1088/2053-1583/ad0404
Shiwei Zhang, Yulong Hao, Fenglin Gao, Xiongqing Wu, Shijie Hao, Mengchun Qiu, Xiaoming Zheng, Yuehua Wei, Guolin Hao
{"title":"Controllable growth of wafer-scale two-dimensional WS2 with outstanding optoelectronic properties","authors":"Shiwei Zhang, Yulong Hao, Fenglin Gao, Xiongqing Wu, Shijie Hao, Mengchun Qiu, Xiaoming Zheng, Yuehua Wei, Guolin Hao","doi":"10.1088/2053-1583/ad0404","DOIUrl":null,"url":null,"abstract":"Abstract As one of two-dimensional (2D) semiconductor materials, transition metal dichalcogenides (TMDs) have sparked enormous potential in next-generation optoelectronics due to their unique and excellent physical, electronic and optical properties. Controllable growth of wafer-scale 2D TMDs is essential to realize various high-end applications, while it remains challenging. Herein, 2-inch 2D WS2 films were successfully synthesized by ambient pressure chemical vapor deposition based on substrate engineering and space-confined strategies. WS2 nucleation density can be effectively modulated depending on the annealing conditions of sapphire substrate. 2D WS2 films with controllable thickness can be fabricated by adjusting the space-confined height. Moreover, our strategies are demonstrated to be universal for the growth of other 2D TMD semiconductors. WS2-based photodetectors with different thicknesses were systematically investigated. Monolayer WS2 photodetector displays large responsivity of 0.355 A/W and high specific detectivity of 1.48 × 1011 Jones. Multilayer WS2 device exhibits negative self-powered photoresponse. Our work provides a new route for the synthesis of wafer-scale 2D TMD materials, paving the way for high performance integrated optoelectronic devices.
","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"61 30 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad0404","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract As one of two-dimensional (2D) semiconductor materials, transition metal dichalcogenides (TMDs) have sparked enormous potential in next-generation optoelectronics due to their unique and excellent physical, electronic and optical properties. Controllable growth of wafer-scale 2D TMDs is essential to realize various high-end applications, while it remains challenging. Herein, 2-inch 2D WS2 films were successfully synthesized by ambient pressure chemical vapor deposition based on substrate engineering and space-confined strategies. WS2 nucleation density can be effectively modulated depending on the annealing conditions of sapphire substrate. 2D WS2 films with controllable thickness can be fabricated by adjusting the space-confined height. Moreover, our strategies are demonstrated to be universal for the growth of other 2D TMD semiconductors. WS2-based photodetectors with different thicknesses were systematically investigated. Monolayer WS2 photodetector displays large responsivity of 0.355 A/W and high specific detectivity of 1.48 × 1011 Jones. Multilayer WS2 device exhibits negative self-powered photoresponse. Our work provides a new route for the synthesis of wafer-scale 2D TMD materials, paving the way for high performance integrated optoelectronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有优异光电性能的晶圆级二维WS2的可控生长
过渡金属二硫族化合物(TMDs)作为一种二维半导体材料,由于其独特的物理、电子和光学特性,在下一代光电子学领域具有巨大的潜力。晶圆级二维tmd的可控生长是实现各种高端应用的必要条件,但仍具有挑战性。本文基于衬底工程和空间限制策略,采用常压化学气相沉积方法成功合成了2英寸二维WS2薄膜。根据蓝宝石衬底的退火条件,可以有效地调节WS2的成核密度。通过调节空间限制高度,可以制备出厚度可控的二维WS2薄膜。此外,我们的策略被证明是普遍的其他2D TMD半导体的增长。系统地研究了不同厚度的ws2基光电探测器。单层WS2光电探测器具有0.355 A/W的高响应率和1.48 × 1011 Jones的高比检出率。多层WS2器件表现出负的自供电光响应。我们的工作为晶圆级二维TMD材料的合成提供了一条新的途径,为高性能集成光电器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1