Multilevel domain uncertainty quantification in computational electromagnetics

Ruben Aylwin, Carlos Jerez-Hanckes, Christoph Schwab, Jakob Zech
{"title":"Multilevel domain uncertainty quantification in computational electromagnetics","authors":"Ruben Aylwin, Carlos Jerez-Hanckes, Christoph Schwab, Jakob Zech","doi":"10.1142/s0218202523500264","DOIUrl":null,"url":null,"abstract":"We continue our study [R. Aylwin, C. Jerez-Hanckes, C. Schwab and J. Zech, Domain uncertainty quantification in computational electromagnetics, SIAM/ASA J. Uncertain. Quant. 8 (2020) 301–341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework, mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates free from the so-called curse of dimensionality. Numerical experiments confirm our theoretical results and verify the superiority of the sparse-grid methods.","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202523500264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We continue our study [R. Aylwin, C. Jerez-Hanckes, C. Schwab and J. Zech, Domain uncertainty quantification in computational electromagnetics, SIAM/ASA J. Uncertain. Quant. 8 (2020) 301–341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework, mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates free from the so-called curse of dimensionality. Numerical experiments confirm our theoretical results and verify the superiority of the sparse-grid methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算电磁学中的多水平域不确定性量化
我们继续学习[R]。艾尔文,C. jerez - hankes, C. Schwab和J. Zech,计算电磁学领域不确定性量化,SIAM/ASA J. uncertainty。不确定几何的Maxwell损耗腔问题时谐电磁场的数值逼近[j] .量子学报,8(2020)301-341。我们采用相同的仿射参数形状参数化框架,用分段光滑映射将物理域映射到标称多边形域。在分段Sobolev空间中描述了标称域上的回拉解的正则性。我们证明了在标称域的边元离散化的误差收敛率,并优化了参数的算法导向,结合:(a)多层蒙特卡罗采样,以及(b)用于计算不确定域集成解的期望的多层稀疏网格正交。此外,我们分析了稀疏网格插值来计算域到解映射的代理。所有的计算都是在多面体标称域上进行的,这使得使用标准的简单有限元网格成为可能。我们提供了一个严格的完全离散误差分析,并表明,在所有情况下,维无关的代数收敛是实现的。对于多层稀疏网格正交方法,我们证明了高阶收敛速率,并且没有所谓的维数诅咒。数值实验证实了我们的理论结果,验证了稀疏网格方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-by-step solving virtual element schemes based on scalar auxiliary variable with relaxation for Allen-Cahn type gradient flows Computational and Analytical Studies of a New Nonlocal Phase-Field Crystal Model in Two Dimensions On the continuum limit of epidemiological models on graphs: convergence and approximation results A nodally bound-preserving finite element method for reaction–convection–diffusion equations Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1