Analysis of RNA Exosome Subunit Transcript Abundance Across Tissues: Implications for Neurological Disease Pathogenesis

{"title":"Analysis of RNA Exosome Subunit Transcript Abundance Across Tissues: Implications for Neurological Disease Pathogenesis","authors":"","doi":"10.14800/rd.1247","DOIUrl":null,"url":null,"abstract":"Exosomopathies are a collection of rare diseases caused by mutations in genes that encode structural subunits of a ribonuclease complex termed the RNA exosome. The RNA exosome mediates both RNA processing and degradation of multiple classes of RNA. This complex is evolutionarily conserved and required for fundamental cellular functions, including rRNA processing. Recently, missense mutations in genes encoding structural subunits of the RNA exosome complex have been linked to a variety of distinct neurological diseases, many of them childhood neuronopathies with at least some cerebellar atrophy. Understanding how these missense mutations lead to the disparate clinical presentations that have been reported for this class of diseases necessitates investigation of how these specific changes alter cell-specific RNA exosome function. Although the RNA exosome complex is routinely referred to as ubiquitously expressed, little is known about the tissue- or cell-specific expression of the RNA exosome complex or any individual subunit. Here, we leverage publicly available RNA-sequencing data to analyze RNA exosome subunit transcript levels in healthy human tissues, focusing on those tissues that are impacted in exosomopathy patients described in clinical reports. This analysis provides evidence to support the characterization of the RNA exosome as ubiquitously expressed with transcript levels for the individual subunits that vary in different tissues. However, the cerebellar hemisphere and cerebellum have high levels of nearly all RNA exosome subunit transcripts. These findings could suggest that the cerebellum has a high requirement for RNA exosome function and potentially explain why cerebellar pathology is common in RNA exosomopathies.","PeriodicalId":90965,"journal":{"name":"RNA & disease (Houston, Tex.)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA & disease (Houston, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/rd.1247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exosomopathies are a collection of rare diseases caused by mutations in genes that encode structural subunits of a ribonuclease complex termed the RNA exosome. The RNA exosome mediates both RNA processing and degradation of multiple classes of RNA. This complex is evolutionarily conserved and required for fundamental cellular functions, including rRNA processing. Recently, missense mutations in genes encoding structural subunits of the RNA exosome complex have been linked to a variety of distinct neurological diseases, many of them childhood neuronopathies with at least some cerebellar atrophy. Understanding how these missense mutations lead to the disparate clinical presentations that have been reported for this class of diseases necessitates investigation of how these specific changes alter cell-specific RNA exosome function. Although the RNA exosome complex is routinely referred to as ubiquitously expressed, little is known about the tissue- or cell-specific expression of the RNA exosome complex or any individual subunit. Here, we leverage publicly available RNA-sequencing data to analyze RNA exosome subunit transcript levels in healthy human tissues, focusing on those tissues that are impacted in exosomopathy patients described in clinical reports. This analysis provides evidence to support the characterization of the RNA exosome as ubiquitously expressed with transcript levels for the individual subunits that vary in different tissues. However, the cerebellar hemisphere and cerebellum have high levels of nearly all RNA exosome subunit transcripts. These findings could suggest that the cerebellum has a high requirement for RNA exosome function and potentially explain why cerebellar pathology is common in RNA exosomopathies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA外泌体亚基转录物在组织中的丰度分析:对神经系统疾病发病机制的影响
外泌体病是由编码核糖核酸酶复合物(称为RNA外泌体)结构亚基的基因突变引起的一系列罕见疾病。RNA外泌体介导多种类型RNA的加工和降解。这种复合物在进化上是保守的,是基本细胞功能(包括rRNA加工)所必需的。最近,编码RNA外泌体复合物结构亚基的基因错义突变与多种不同的神经系统疾病有关,其中许多是儿童神经病变,至少有一些小脑萎缩。了解这些错义突变如何导致这类疾病的不同临床表现,需要研究这些特异性变化如何改变细胞特异性RNA外泌体功能。尽管RNA外泌体复合物通常被认为是无处不在的表达,但对RNA外泌体复合物或任何单个亚基的组织或细胞特异性表达知之甚少。在这里,我们利用公开可用的RNA测序数据来分析健康人体组织中的RNA外泌体亚基转录水平,重点关注临床报告中描述的外泌体病患者中受影响的组织。该分析提供了证据支持RNA外泌体在不同组织中普遍表达的特征,其转录物水平在不同的亚基中有所不同。然而,小脑半球和小脑具有高水平的几乎所有RNA外泌体亚基转录物。这些发现可能表明小脑对RNA外泌体功能有很高的要求,并可能解释为什么小脑病理在RNA外泌体病中很常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Analysis of RNA Exosome Subunit Transcript Abundance Across Tissues: Implications for Neurological Disease Pathogenesis Modeling Pathogenic Variants in the RNA Exosome. Long Non-coding RNA Landscape in Colorectal Cancer MicroRNA-7: A critical sensitizer for TRAIL sensitivity in glioblastoma cells Implication of obesity-induced miR-96 in hepatic insulin resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1