Pin-point surgery of proton-deuterium substitution to enhance polybenzimidazole thermoresistances

IF 1.4 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Chemistry Letters Pub Date : 2023-09-22 DOI:10.1246/cl.230315
Xianzhu Zhong, Aniruddha Nag, Jiabei Zhou, Kenji Takada, Motoyuki Kusano, Tatsuo Kaneko
{"title":"Pin-point surgery of proton-deuterium substitution to enhance polybenzimidazole thermoresistances","authors":"Xianzhu Zhong, Aniruddha Nag, Jiabei Zhou, Kenji Takada, Motoyuki Kusano, Tatsuo Kaneko","doi":"10.1246/cl.230315","DOIUrl":null,"url":null,"abstract":"Thermal stability plays a crucial role in determining the polymer suitability as high-performance thermoresistant materials, which are highly demanded for lightweight substitute to metal or ceramic materials in a sustainable society. We here present an innovative approach involving the in-situ substitution of imidazole protons of polybenzimidazole (PBI) derivatives with deuterium using deuterated solvents to enhance thermal stability. The resulting substituted polymers exhibited significantly higher thermal decomposition temperatures compared to their original counterparts. This notable improvement can be attributed to the N-D bond, which possesses a low stretching frequency, demanding a greater amount of activating energy compared to the N-H bond, enabling the polymer to withstand higher temperatures. This discovery presents a novel and promising avenue for enhancing polymer thermoresistance, providing valuable insights for the development of advanced materials with enhanced thermal stability. Pinpoint surgery through in situ isotopic proton-deuterium substitution significantly enhanced the thermal degradation temperature of polybenzoxazoles, this is because N-D bond exhibit a lower stretching frequency than N-H, demanding more activating energy and thus can withstand higher temperature. This discovery provides a novel and straightforward method to elevate thermostability for polymers.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":"18 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1246/cl.230315","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal stability plays a crucial role in determining the polymer suitability as high-performance thermoresistant materials, which are highly demanded for lightweight substitute to metal or ceramic materials in a sustainable society. We here present an innovative approach involving the in-situ substitution of imidazole protons of polybenzimidazole (PBI) derivatives with deuterium using deuterated solvents to enhance thermal stability. The resulting substituted polymers exhibited significantly higher thermal decomposition temperatures compared to their original counterparts. This notable improvement can be attributed to the N-D bond, which possesses a low stretching frequency, demanding a greater amount of activating energy compared to the N-H bond, enabling the polymer to withstand higher temperatures. This discovery presents a novel and promising avenue for enhancing polymer thermoresistance, providing valuable insights for the development of advanced materials with enhanced thermal stability. Pinpoint surgery through in situ isotopic proton-deuterium substitution significantly enhanced the thermal degradation temperature of polybenzoxazoles, this is because N-D bond exhibit a lower stretching frequency than N-H, demanding more activating energy and thus can withstand higher temperature. This discovery provides a novel and straightforward method to elevate thermostability for polymers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子-氘取代的定点手术提高聚苯并咪唑的耐热性
高分子材料的热稳定性是决定高分子材料能否成为高性能耐热材料的关键因素,在可持续发展的社会中,高分子材料是金属或陶瓷材料的轻量化替代品。我们在这里提出了一种创新的方法,包括用氘代替聚苯并咪唑(PBI)衍生物的咪唑质子,以增强热稳定性。所得到的取代聚合物表现出明显高于其原始对应物的热分解温度。这种显著的改进可归因于N-D键,它具有较低的拉伸频率,与N-H键相比,需要更多的激活能,使聚合物能够承受更高的温度。这一发现为增强聚合物耐热性提供了一条新颖而有前途的途径,为开发具有增强热稳定性的先进材料提供了有价值的见解。通过原位同位素质子-氘取代的定点手术显著提高了聚苯并恶唑的热降解温度,这是因为N-D键的拉伸频率比N-H键低,需要更多的激活能,因此可以承受更高的温度。这一发现为提高聚合物的热稳定性提供了一种新颖而直接的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry Letters
Chemistry Letters 化学-化学综合
CiteScore
3.00
自引率
6.20%
发文量
260
审稿时长
1.2 months
期刊介绍: Chemistry Letters covers the following topics: -Organic Chemistry- Physical Chemistry- Inorganic Chemistry- Analytical Chemistry- Materials Chemistry- Polymer Chemistry- Supramolecular Chemistry- Organometallic Chemistry- Coordination Chemistry- Biomolecular Chemistry- Natural Products and Medicinal Chemistry- Electrochemistry
期刊最新文献
Tin Oxides as a Negative Electrode Material for Mg-Ion Batteries Chemometrics-assisted functionalization of boronic acid-derived supramolecules Regulating oxidation states of Cu nanowires for enhanced catalytic reduction of 4-nitrophenol Preliminary studies on ion-pair extractions of Zr, Hf, Nb, and Ta using extractants having tertiary N atom from H2SO4 and HF Neural Network Potential Calculations for Melamine Adsorption onto Pt (111) Comparing with Density Functional Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1