{"title":"Multi-User Mobile Augmented Reality with ID-aware Visual Interaction","authors":"Xinjun Cai, Zheng Yang, Liang Dong, Qiang Ma, Xin Miao, Zhuo Liu","doi":"10.1145/3623638","DOIUrl":null,"url":null,"abstract":"Most existing multi-user Augmented Reality (AR) systems only support multiple co-located users to view a common set of virtual objects but lack the ability to enable each user to directly interact with other users appearing in his/her view. Such multi-user AR systems should be able to detect the human keypoints and estimate device poses (for identifying different users) in the meanwhile. However, due to the stringent low latency requirements and the intensive computation of the above two capabilities, previous research only enables either of the two capabilities for mobile devices even with the aid of the edge server. Integrating the above two capabilities is promising but non-trivial in terms of latency, accuracy, and matching. To fill this gap, we propose DiTing to achieve real-time ID-aware multi-device visual interaction for multi-user AR applications, which contains three key innovations: Shared On-device Tracking to merge the similar computation for optimized latency, Tightly Coupled Dual Pipeline to enhance the accuracy of each task through mutual assistance, Body Affinity Particle Filter to precisely match device poses with human bodies. We implement DiTing on four types of mobile AR devices and develop a multi-user AR game as a case study. Extensive experiments show that DiTing can provide high-quality human keypoint detection and pose estimation in real-time (30fps) for ID-aware multi-device interaction and outperform the SOTA baseline approaches.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"78 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3623638","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Most existing multi-user Augmented Reality (AR) systems only support multiple co-located users to view a common set of virtual objects but lack the ability to enable each user to directly interact with other users appearing in his/her view. Such multi-user AR systems should be able to detect the human keypoints and estimate device poses (for identifying different users) in the meanwhile. However, due to the stringent low latency requirements and the intensive computation of the above two capabilities, previous research only enables either of the two capabilities for mobile devices even with the aid of the edge server. Integrating the above two capabilities is promising but non-trivial in terms of latency, accuracy, and matching. To fill this gap, we propose DiTing to achieve real-time ID-aware multi-device visual interaction for multi-user AR applications, which contains three key innovations: Shared On-device Tracking to merge the similar computation for optimized latency, Tightly Coupled Dual Pipeline to enhance the accuracy of each task through mutual assistance, Body Affinity Particle Filter to precisely match device poses with human bodies. We implement DiTing on four types of mobile AR devices and develop a multi-user AR game as a case study. Extensive experiments show that DiTing can provide high-quality human keypoint detection and pose estimation in real-time (30fps) for ID-aware multi-device interaction and outperform the SOTA baseline approaches.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.