{"title":"Expanding impact of mobile health programs: SAHELI for maternal and child care","authors":"Shresth Verma, Gargi Singh, Aditya Mate, Paritosh Verma, Sruthi Gorantla, Neha Madhiwalla, Aparna Hegde, Divy Thakkar, Manish Jain, Milind Tambe, Aparna Taneja","doi":"10.1002/aaai.12126","DOIUrl":null,"url":null,"abstract":"<p>Underserved communities face critical health challenges due to lack of access to timely and reliable information. Nongovernmental organizations are leveraging the widespread use of cellphones to combat these healthcare challenges and spread preventative awareness. The health workers at these organizations reach out individually to beneficiaries; however, such programs still suffer from declining engagement. We have deployed <span>Saheli</span>, a system to efficiently utilize the limited availability of health workers for improving maternal and child health in India. <span>Saheli</span> uses the Restless Multi-armed Bandit (RMAB) framework to identify beneficiaries for outreach. It is the <i>first deployed application</i> for RMABs in public health, and is already <i>in continuous use</i> by our partner NGO, ARMMAN. We have already reached ∼130K beneficiaries with <span>Saheli</span>, and are on track to serve one million beneficiaries by the end of 2023. This scale and impact has been achieved through multiple innovations in the RMAB model and its development, in preparation of real world data, and in deployment practices; and through careful consideration of responsible AI practices. Specifically, in this paper, we describe our approach to learn from past data to improve the performance of <span>Saheli</span>'s RMAB model, the real-world challenges faced during deployment and adoption of <span>Saheli</span>, and the end-to-end pipeline.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 4","pages":"363-376"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12126","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Underserved communities face critical health challenges due to lack of access to timely and reliable information. Nongovernmental organizations are leveraging the widespread use of cellphones to combat these healthcare challenges and spread preventative awareness. The health workers at these organizations reach out individually to beneficiaries; however, such programs still suffer from declining engagement. We have deployed Saheli, a system to efficiently utilize the limited availability of health workers for improving maternal and child health in India. Saheli uses the Restless Multi-armed Bandit (RMAB) framework to identify beneficiaries for outreach. It is the first deployed application for RMABs in public health, and is already in continuous use by our partner NGO, ARMMAN. We have already reached ∼130K beneficiaries with Saheli, and are on track to serve one million beneficiaries by the end of 2023. This scale and impact has been achieved through multiple innovations in the RMAB model and its development, in preparation of real world data, and in deployment practices; and through careful consideration of responsible AI practices. Specifically, in this paper, we describe our approach to learn from past data to improve the performance of Saheli's RMAB model, the real-world challenges faced during deployment and adoption of Saheli, and the end-to-end pipeline.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.