首页 > 最新文献

Ai Magazine最新文献

英文 中文
Leveraging AI to improve health information access in the World's largest maternal mobile health program 利用人工智能改善世界上最大的孕产妇流动保健项目的卫生信息获取
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-12-10 DOI: 10.1002/aaai.12206
Shresth Verma, Arshika Lalan, Paula Rodriguez Diaz, Panayiotis Danassis, Amrita Mahale, Kumar Madhu Sudan, Aparna Hegde, Milind Tambe, Aparna Taneja

Harnessing the wide-spread availability of cell phones, many nonprofits have launched mobile health (mHealth) programs to deliver information via voice or text to beneficiaries in underserved communities, with maternal and infant health being a key area of such mHealth programs. Unfortunately, dwindling listenership is a major challenge, requiring targeted interventions using limited resources. This paper focuses on Kilkari, the world's largest mHealth program for maternal and child care – with over 3 million active subscribers at a time – launched by India's Ministry of Health and Family Welfare (MoHFW) and run by the non-profit ARMMAN. We present a system called CHAHAK that aims to reduce automated dropouts as well as boost engagement with the program through the strategic allocation of interventions to beneficiaries. Past work in a similar domain has focused on a much smaller scale mHealth program and used markovian restless multiarmed bandits to optimize a single limited intervention resource. However, this paper demonstrates the challenges in adopting a markovian approach in Kilkari; therefore, CHAHAK instead relies on non-markovian time-series restless bandits and optimizes multiple interventions to improve listenership. We use real Kilkari data from the Odisha state in India to show CHAHAK's effectiveness in harnessing multiple interventions to boost listenership, benefiting marginalized communities. When deployed CHAHAK will assist the largest maternal mHealth program to date.

利用手机的广泛可用性,许多非营利组织已经启动了移动健康(mHealth)项目,通过语音或文本向服务不足社区的受益者传递信息,孕产妇和婴儿健康是此类移动健康项目的一个关键领域。不幸的是,听众人数的减少是一个重大挑战,需要利用有限的资源进行有针对性的干预。Kilkari是世界上最大的妇幼保健移动医疗项目,一次拥有300多万活跃用户,由印度卫生和家庭福利部(MoHFW)发起,由非营利组织ARMMAN运营。我们提出了一个名为CHAHAK的系统,旨在减少自动退学,并通过向受益人战略性地分配干预措施来提高对该计划的参与度。过去在类似领域的工作主要集中在规模小得多的移动医疗项目上,并使用马尔可夫不宁多武装强盗来优化单一有限的干预资源。然而,本文展示了在Kilkari中采用马尔可夫方法的挑战;因此,CHAHAK转而依靠非马尔可夫时间序列不宁盗匪,并优化多重干预来提高听众。我们使用来自印度奥里萨邦的真实Kilkari数据来展示CHAHAK在利用多种干预措施提高听众人数,使边缘化社区受益方面的有效性。部署后,CHAHAK将协助迄今为止最大的孕产妇移动医疗项目。
{"title":"Leveraging AI to improve health information access in the World's largest maternal mobile health program","authors":"Shresth Verma,&nbsp;Arshika Lalan,&nbsp;Paula Rodriguez Diaz,&nbsp;Panayiotis Danassis,&nbsp;Amrita Mahale,&nbsp;Kumar Madhu Sudan,&nbsp;Aparna Hegde,&nbsp;Milind Tambe,&nbsp;Aparna Taneja","doi":"10.1002/aaai.12206","DOIUrl":"https://doi.org/10.1002/aaai.12206","url":null,"abstract":"<p>Harnessing the wide-spread availability of cell phones, many nonprofits have launched mobile health (mHealth) programs to deliver information via voice or text to beneficiaries in underserved communities, with maternal and infant health being a key area of such mHealth programs. Unfortunately, dwindling listenership is a major challenge, requiring targeted interventions using limited resources. This paper focuses on Kilkari, the world's largest mHealth program for maternal and child care – with over 3 million active subscribers at a time – launched by India's Ministry of Health and Family Welfare (MoHFW) and run by the non-profit ARMMAN. We present a system called CHAHAK that aims to reduce automated dropouts as well as boost engagement with the program through the strategic allocation of interventions to beneficiaries. Past work in a similar domain has focused on a much smaller scale mHealth program and used markovian restless multiarmed bandits to optimize a single limited intervention resource. However, this paper demonstrates the challenges in adopting a markovian approach in Kilkari; therefore, CHAHAK instead relies on non-markovian time-series restless bandits and optimizes multiple interventions to improve listenership. We use real Kilkari data from the Odisha state in India to show CHAHAK's effectiveness in harnessing multiple interventions to boost listenership, benefiting marginalized communities. When deployed CHAHAK will assist the largest maternal mHealth program to date.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"526-536"},"PeriodicalIF":2.5,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12206","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to the special issue on Innovative Applications of Artificial Intelligence (IAAI 2024) 人工智能创新应用特刊(IAAI 2024)简介
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-27 DOI: 10.1002/aaai.12205
Alexander Wong, Yuhao Chen, Jan Seyler

This special issue of AI Magazine covers select applications from the Innovative Applications of Artificial Intelligence (IAAI) conference held in 2024 in Vancouver, Canada. The articles address a broad range of very challenging issues and contain great lessons for AI researchers and application developers.

{"title":"Introduction to the special issue on Innovative Applications of Artificial Intelligence (IAAI 2024)","authors":"Alexander Wong,&nbsp;Yuhao Chen,&nbsp;Jan Seyler","doi":"10.1002/aaai.12205","DOIUrl":"https://doi.org/10.1002/aaai.12205","url":null,"abstract":"<p>This special issue of <i>AI Magazine</i> covers select applications from the Innovative Applications of Artificial Intelligence (IAAI) conference held in 2024 in Vancouver, Canada. The articles address a broad range of very challenging issues and contain great lessons for AI researchers and application developers.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"440-442"},"PeriodicalIF":2.5,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deceptively simple: An outsider's perspective on natural language processing 简单得令人难以置信:从局外人的角度看自然语言处理
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1002/aaai.12204
Ashiqur R. KhudaBukhsh

This article highlights a collection of ideas with an underlying deceptive simplicity that addresses several practical challenges in computational social science and generative AI safety. These ideas lead to (1) an interpretable and quantifiable framework for political polarization; (2) a language identifier robust to noisy social media text settings; (3) a cross-lingual semantic sampler that harnesses code-switching; and (4) a bias audit framework that uncovers shocking racism, antisemitism, misogyny, and other biases in a wide suite of large language models.

本文重点介绍了一系列具有潜在欺骗性的简单想法,这些想法解决了计算社会科学和生成式人工智能安全中的几个实际挑战。这些想法导致:(1)政治两极分化的可解释和可量化框架;(2)对嘈杂的社交媒体文本设置具有鲁棒性的语言标识符;(3)利用语码转换的跨语言语义采样器;(4)一个偏见审计框架,可以在一系列大型语言模型中发现令人震惊的种族主义、反犹主义、厌女症和其他偏见。
{"title":"Deceptively simple: An outsider's perspective on natural language processing","authors":"Ashiqur R. KhudaBukhsh","doi":"10.1002/aaai.12204","DOIUrl":"https://doi.org/10.1002/aaai.12204","url":null,"abstract":"<p>This article highlights a collection of ideas with an underlying deceptive simplicity that addresses several practical challenges in computational social science and generative AI safety. These ideas lead to (1) an interpretable and quantifiable framework for political polarization; (2) a language identifier robust to noisy social media text settings; (3) a cross-lingual semantic sampler that harnesses code-switching; and (4) a bias audit framework that uncovers shocking racism, antisemitism, misogyny, and other biases in a wide suite of large language models.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"569-582"},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12204","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-assisted research collaboration with open data for fair and effective response to call for proposals 利用开放数据进行人工智能辅助研究合作,以公平有效地响应提案征集
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1002/aaai.12203
Siva Likitha Valluru, Michael Widener, Biplav Srivastava, Sriraam Natarajan, Sugata Gangopadhyay

Building teams and promoting collaboration are two very common business activities. An example of these are seen in the TeamingForFunding problem, where research institutions and researchers are interested to identify collaborative opportunities when applying to funding agencies in response to latter's calls for proposals. We describe a novel deployed system to recommend teams using a variety of Artificial Intelligence (AI) methods, such that (1) each team achieves the highest possible skill coverage that is demanded by the opportunity, and (2) the workload of distributing the opportunities is balanced among the candidate members. We address these questions by extracting skills latent in open data of proposal calls (demand) and researcher profiles (supply), normalizing them using taxonomies, and creating efficient algorithms that match demand to supply. We create teams to maximize goodness along a novel metric balancing short- and long-term objectives. We evaluate our system in two diverse settings in US and India of researchers and proposal calls, at two different time instants about 1 year apart (total 4 settings), to establish generality of our approach, and deploy it at a major US university. We validate the effectiveness of our algorithms (1) quantitatively, by evaluating the recommended teams using a goodness score and find that more informed methods lead to recommendations of smaller number of teams and higher goodness, and (2) qualitatively, by conducting a large-scale user study at a college-wide level, and demonstrate that users overall found the tool very useful and relevant.

构建团队和促进协作是两个非常常见的业务活动。在TeamingForFunding问题中可以看到一个例子,研究机构和研究人员在向资助机构申请提案时,有兴趣确定合作机会。我们描述了一个新的部署系统,使用各种人工智能(AI)方法来推荐团队,这样(1)每个团队都达到了机会所需的最高技能覆盖率,(2)分配机会的工作量在候选成员之间是平衡的。我们通过提取提案呼叫(需求)和研究人员简介(供应)的公开数据中潜在的技能来解决这些问题,使用分类法对它们进行规范化,并创建匹配需求与供应的有效算法。我们创建团队,沿着平衡短期和长期目标的新度量最大化优秀。我们在美国和印度的两个不同的研究人员和提案电话环境中评估了我们的系统,在两个不同的时间点,大约相隔1年(总共4个环境),以建立我们方法的通用性,并在美国一所主要大学部署它。我们验证了我们的算法的有效性(1)定量地,通过使用优度评分评估推荐的团队,发现更明智的方法导致推荐的团队数量更少,优度更高;(2)定性地,通过在大学范围内进行大规模的用户研究,并证明用户总体上认为该工具非常有用和相关。
{"title":"AI-assisted research collaboration with open data for fair and effective response to call for proposals","authors":"Siva Likitha Valluru,&nbsp;Michael Widener,&nbsp;Biplav Srivastava,&nbsp;Sriraam Natarajan,&nbsp;Sugata Gangopadhyay","doi":"10.1002/aaai.12203","DOIUrl":"https://doi.org/10.1002/aaai.12203","url":null,"abstract":"<p>Building teams and promoting collaboration are two very common business activities. An example of these are seen in the <i>TeamingForFunding</i> problem, where research institutions and researchers are interested to identify collaborative opportunities when applying to funding agencies in response to latter's calls for proposals. We describe a novel <i>deployed</i> system to recommend teams using a variety of Artificial Intelligence (AI) methods, such that (1) each team achieves the highest possible skill coverage that is demanded by the opportunity, and (2) the workload of distributing the opportunities is balanced among the candidate members. We address these questions by extracting skills latent in open data of proposal calls (demand) and researcher profiles (supply), normalizing them using taxonomies, and creating efficient algorithms that match demand to supply. We create teams to maximize goodness along a novel metric balancing short- and long-term objectives. We evaluate our system in two diverse settings in US and India of researchers and proposal calls, at two different time instants about 1 year apart (total 4 settings), to establish generality of our approach, and deploy it at a major US university. We validate the effectiveness of our algorithms (1) quantitatively, by evaluating the recommended teams using a goodness score and find that more informed methods lead to recommendations of smaller number of teams and higher goodness, and (2) qualitatively, by conducting a large-scale user study at a college-wide level, and demonstrate that users overall found the tool very useful and relevant.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"457-471"},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning representations for robust human–robot interaction 鲁棒人机交互的学习表征
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1002/aaai.12197
Yen-Ling Kuo

This article summarizes the author's presentation in the New Faculty Highlight at the Thirty-Eighth AAAI Conference on Artificial Intelligence. It discusses the desired properties of representations for enabling robust human–robot interaction. Examples from the author's work are presented to show how to build these properties into models for performing tasks with natural language guidance and engaging in social interactions with other agents.

本文总结了作者在第38届美国人工智能协会(AAAI)人工智能会议“新教员亮点”上的演讲。它讨论了实现鲁棒人机交互所需的表征属性。本文给出了作者工作中的示例,以展示如何将这些属性构建到模型中,以便在自然语言指导下执行任务,并与其他代理进行社会互动。
{"title":"Learning representations for robust human–robot interaction","authors":"Yen-Ling Kuo","doi":"10.1002/aaai.12197","DOIUrl":"https://doi.org/10.1002/aaai.12197","url":null,"abstract":"<p>This article summarizes the author's presentation in the New Faculty Highlight at the Thirty-Eighth AAAI Conference on Artificial Intelligence. It discusses the desired properties of representations for enabling robust human–robot interaction. Examples from the author's work are presented to show how to build these properties into models for performing tasks with natural language guidance and engaging in social interactions with other agents.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"561-568"},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey of out-of-distribution generalization for graph machine learning from a causal view
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-18 DOI: 10.1002/aaai.12202
Jing Ma

Graph machine learning (GML) has been successfully applied across a wide range of tasks. Nonetheless, GML faces significant challenges in generalizing over out-of-distribution (OOD) data, which raises concerns about its wider applicability. Recent advancements have underscored the crucial role of causality-driven approaches in overcoming these generalization challenges. Distinct from traditional GML methods that primarily rely on statistical dependencies, causality-focused strategies delve into the underlying causal mechanisms of data generation and model prediction, thus significantly improving the generalization of GML across different environments. This paper offers a thorough review of recent progress in causality-involved GML generalization. We elucidate the fundamental concepts of employing causality to enhance graph model generalization and categorize the various approaches, providing detailed descriptions of their methodologies and the connections among them. Furthermore, we explore the incorporation of causality in other related important areas of trustworthy GML, such as explanation, fairness, and robustness. Concluding with a discussion on potential future research directions, this review seeks to articulate the continuing development and future potential of causality in enhancing the trustworthiness of GML.

{"title":"A survey of out-of-distribution generalization for graph machine learning from a causal view","authors":"Jing Ma","doi":"10.1002/aaai.12202","DOIUrl":"https://doi.org/10.1002/aaai.12202","url":null,"abstract":"<p>Graph machine learning (GML) has been successfully applied across a wide range of tasks. Nonetheless, GML faces significant challenges in generalizing over out-of-distribution (OOD) data, which raises concerns about its wider applicability. Recent advancements have underscored the crucial role of causality-driven approaches in overcoming these generalization challenges. Distinct from traditional GML methods that primarily rely on statistical dependencies, causality-focused strategies delve into the underlying causal mechanisms of data generation and model prediction, thus significantly improving the generalization of GML across different environments. This paper offers a thorough review of recent progress in causality-involved GML generalization. We elucidate the fundamental concepts of employing causality to enhance graph model generalization and categorize the various approaches, providing detailed descriptions of their methodologies and the connections among them. Furthermore, we explore the incorporation of causality in other related important areas of trustworthy GML, such as explanation, fairness, and robustness. Concluding with a discussion on potential future research directions, this review seeks to articulate the continuing development and future potential of causality in enhancing the trustworthiness of GML.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"537-548"},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusing remote and social sensing data for flood impact mapping 融合遥感和社会遥感数据进行洪水影响制图
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-18 DOI: 10.1002/aaai.12196
Zainab Akhtar, Umair Qazi, Aya El-Sakka, Rizwan Sadiq, Ferda Ofli, Muhammad Imran

The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end-to-end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state-of-the-art natural language processing and computer vision models to identify flood exposure, ground-level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real-world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground-truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard-hit districts and enhancing disaster response.

缺乏全面的态势感知信息给人道主义组织的救灾工作带来了巨大挑战。我们介绍的 "洪水洞察 "是一个端到端系统,可从遥感、社会感应和地理空间数据等多个非传统数据源获取数据。我们采用最先进的自然语言处理和计算机视觉模型来识别洪水风险、地面损失和洪水报告,最重要的是识别受灾人口的迫切需求。我们在 2022 年巴基斯坦洪灾这一最近发生的实际灾难中部署并测试了该系统,以显示地区一级的重要情况和损失信息。我们通过使用官方地面实况数据进行各种统计分析,验证了该系统的有效性,展示了其整合多种数据源的强大性能和解释能力。此外,该系统还受到了联合国开发计划署驻巴基斯坦办事处和地方当局的赞扬,因为它准确定位了重灾区,增强了救灾能力。
{"title":"Fusing remote and social sensing data for flood impact mapping","authors":"Zainab Akhtar,&nbsp;Umair Qazi,&nbsp;Aya El-Sakka,&nbsp;Rizwan Sadiq,&nbsp;Ferda Ofli,&nbsp;Muhammad Imran","doi":"10.1002/aaai.12196","DOIUrl":"https://doi.org/10.1002/aaai.12196","url":null,"abstract":"<p>The absence of comprehensive situational awareness information poses a significant challenge for humanitarian organizations during their response efforts. We present Flood Insights, an end-to-end system, that ingests data from multiple nontraditional data sources such as remote sensing, social sensing, and geospatial data. We employ state-of-the-art natural language processing and computer vision models to identify flood exposure, ground-level damage and flood reports, and most importantly, urgent needs of affected people. We deploy and test the system during a recent real-world catastrophe, the 2022 Pakistan floods, to surface critical situational and damage information at the district level. We validated the system's effectiveness through various statistical analyses using official ground-truth data, showcasing its strong performance and explanatory power of integrating multiple data sources. Moreover, the system was commended by the United Nations Development Programme stationed in Pakistan, as well as local authorities, for pinpointing hard-hit districts and enhancing disaster response.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"486-501"},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The virtual driving instructor: Multi-agent system collaborating via knowledge graph for scalable driver education 虚拟驾驶教练:基于知识图谱的多智能体系统协作,实现可扩展的驾驶员教育
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-18 DOI: 10.1002/aaai.12201
Johannes Rehm, Irina Reshodko, Stian Zimmermann Børresen, Odd Erik Gundersen

This work introduces the design, development, and deployment of a virtual driving instructor (VDI) for enhanced driver education. The VDI provides personalized, real-time feedback to students in a driving simulator, addressing some of the limitations of traditional driver instruction. Employing a hybrid AI system, the VDI combines rule-based agents, learning-based agents, knowledge graphs, and Bayesian networks to assess and monitor student performance in a comprehensive manner. Implemented in multiple simulators at a driving school in Norway, the system aims to leverage AI and driving simulation to improve both the learning experience and the efficiency of instruction. Initial feedback from students has been largely positive, highlighting the effectiveness of this integration while also pointing to areas for further improvement. This marks a significant stride in infusing technology into driver education, offering a scalable and efficient approach to instruction.

本工作介绍了虚拟驾驶教练(VDI)的设计、开发和部署,以增强驾驶员教育。VDI在驾驶模拟器中为学生提供个性化的实时反馈,解决了传统驾驶教学的一些局限性。VDI采用混合人工智能系统,将基于规则的智能体、基于学习的智能体、知识图和贝叶斯网络相结合,以全面的方式评估和监控学生的表现。该系统在挪威一所驾校的多个模拟器中实施,旨在利用人工智能和驾驶模拟来改善学习体验和教学效率。来自学生的初步反馈基本上是积极的,突出了这种整合的有效性,同时也指出了进一步改进的领域。这标志着在将技术注入驾驶员教育方面迈出了重要的一步,提供了一种可扩展和有效的教学方法。
{"title":"The virtual driving instructor: Multi-agent system collaborating via knowledge graph for scalable driver education","authors":"Johannes Rehm,&nbsp;Irina Reshodko,&nbsp;Stian Zimmermann Børresen,&nbsp;Odd Erik Gundersen","doi":"10.1002/aaai.12201","DOIUrl":"https://doi.org/10.1002/aaai.12201","url":null,"abstract":"<p>This work introduces the design, development, and deployment of a virtual driving instructor (VDI) for enhanced driver education. The VDI provides personalized, real-time feedback to students in a driving simulator, addressing some of the limitations of traditional driver instruction. Employing a hybrid AI system, the VDI combines rule-based agents, learning-based agents, knowledge graphs, and Bayesian networks to assess and monitor student performance in a comprehensive manner. Implemented in multiple simulators at a driving school in Norway, the system aims to leverage AI and driving simulation to improve both the learning experience and the efficiency of instruction. Initial feedback from students has been largely positive, highlighting the effectiveness of this integration while also pointing to areas for further improvement. This marks a significant stride in infusing technology into driver education, offering a scalable and efficient approach to instruction.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"514-525"},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Framework to enable and test conversational assistant for APIs and RPAs 框架来启用和测试api和rpa的会话助手
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-18 DOI: 10.1002/aaai.12198
Jayachandu Bandlamudi, Kushal Mukherjee, Prerna Agarwal, Ritwik Chaudhuri, Rakesh Pimplikar, Sampath Dechu, Alex Straley, Anbumunee Ponniah, Renuka Sindhgatta

In the realm of business automation, conversational assistants are emerging as the primary method for making automation software accessible to users in various business sectors. Access to automation primarily occurs through application programming interface (APIs) and robotic process automation (RPAs). To effectively convert APIs and RPAs into chatbots on a larger scale, it is crucial to establish an automated process for generating data and training models that can recognize user intentions, identify questions for conversational slot filling, and provide recommendations for subsequent actions. In this paper, we present a technique for enhancing and generating natural language conversational artifacts from API specifications using large language models (LLMs). The goal is to utilize LLMs in the “build” phase to assist humans in creating skills for digital assistants. As a result, the system does not need to rely on LLMs during conversations with business users, leading to efficient deployment. Along with enabling digital assistants, our system employs LLMs as proxies to simulate human interaction and automatically evaluate the digital assistant's performance. Experimental results highlight the effectiveness of our proposed approach. Our system is deployed in the IBM Watson Orchestrate product for general availability.

在业务自动化领域,会话助手正在成为各种业务部门的用户访问自动化软件的主要方法。对自动化的访问主要是通过应用程序编程接口(api)和机器人过程自动化(rpa)实现的。为了有效地将api和rpa转换为更大规模的聊天机器人,建立一个自动化的过程来生成数据和训练模型是至关重要的,这些模型可以识别用户意图,识别会话槽填充的问题,并为后续行动提供建议。在本文中,我们提出了一种使用大型语言模型(llm)从API规范增强和生成自然语言会话工件的技术。目标是在“构建”阶段利用法学硕士来帮助人类为数字助理创造技能。因此,系统在与业务用户对话时不需要依赖llm,从而实现了高效的部署。随着数字助理的启用,我们的系统采用法学硕士作为代理来模拟人类互动并自动评估数字助理的表现。实验结果表明了该方法的有效性。我们的系统部署在IBM Watson Orchestrate产品中,以提供一般可用性。
{"title":"Framework to enable and test conversational assistant for APIs and RPAs","authors":"Jayachandu Bandlamudi,&nbsp;Kushal Mukherjee,&nbsp;Prerna Agarwal,&nbsp;Ritwik Chaudhuri,&nbsp;Rakesh Pimplikar,&nbsp;Sampath Dechu,&nbsp;Alex Straley,&nbsp;Anbumunee Ponniah,&nbsp;Renuka Sindhgatta","doi":"10.1002/aaai.12198","DOIUrl":"https://doi.org/10.1002/aaai.12198","url":null,"abstract":"<p>In the realm of business automation, conversational assistants are emerging as the primary method for making automation software accessible to users in various business sectors. Access to automation primarily occurs through application programming interface (APIs) and robotic process automation (RPAs). To effectively convert APIs and RPAs into chatbots on a larger scale, it is crucial to establish an automated process for generating data and training models that can recognize user intentions, identify questions for conversational slot filling, and provide recommendations for subsequent actions. In this paper, we present a technique for enhancing and generating natural language conversational artifacts from API specifications using large language models (LLMs). The goal is to utilize LLMs in the “build” phase to assist humans in creating skills for digital assistants. As a result, the system does not need to rely on LLMs during conversations with business users, leading to efficient deployment. Along with enabling digital assistants, our system employs LLMs as proxies to simulate human interaction and automatically evaluate the digital assistant's performance. Experimental results highlight the effectiveness of our proposed approach. Our system is deployed in the IBM Watson Orchestrate product for general availability.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"443-456"},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12198","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-efficient graph learning: Problems, progress, and prospects 数据高效图学习:问题、进展和前景
IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-18 DOI: 10.1002/aaai.12200
Kaize Ding, Yixin Liu, Chuxu Zhang, Jianling Wang

Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) have drawn much attention in both academic and industrial communities in the past decades. Despite their success in different graph learning tasks, existing methods usually rely on learning from “big” data, requiring a large amount of labeled data for model training. However, it is common that real-world graphs are associated with “small” labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph machine learning (graph ML) with low-cost human supervision for low-resource settings where limited or even no labeled data is available. This paper investigates a new research field—data-efficient graph learning, which aims to push forward the performance boundary of graph ML models with different kinds of low-cost supervision signals. Specifically, we outline the fundamental research problems, review the current progress, and discuss the future prospects of data-efficient graph learning, aiming to illuminate the path for subsequent research in this field.

从社交网络到金融交易网络,从引文网络到基因调控网络,图结构数据已被广泛用于模拟现实世界中的各种系统。作为图结构数据建模的主流模型架构,图神经网络(GNN)在过去几十年中引起了学术界和工业界的广泛关注。尽管它们在不同的图学习任务中取得了成功,但现有方法通常依赖于从 "大 "数据中学习,需要大量标注数据来进行模型训练。然而,现实世界中的图通常与 "小 "标注数据相关联,因为对图进行数据注释和标注总是耗费时间和资源。因此,在资源有限甚至没有标注数据的情况下,研究具有低成本人工监督的图机器学习(graph ML)势在必行。本文探讨了一个新的研究领域--数据高效图学习,旨在通过不同类型的低成本监督信号来推动图 ML 模型的性能边界。具体而言,我们概述了数据高效图学习的基础研究问题,回顾了当前的研究进展,并讨论了其未来前景,旨在为该领域的后续研究指明方向。
{"title":"Data-efficient graph learning: Problems, progress, and prospects","authors":"Kaize Ding,&nbsp;Yixin Liu,&nbsp;Chuxu Zhang,&nbsp;Jianling Wang","doi":"10.1002/aaai.12200","DOIUrl":"https://doi.org/10.1002/aaai.12200","url":null,"abstract":"<p>Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) have drawn much attention in both academic and industrial communities in the past decades. Despite their success in different graph learning tasks, existing methods usually rely on learning from “big” data, requiring a large amount of labeled data for model training. However, it is common that real-world graphs are associated with “small” labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph machine learning (graph ML) with low-cost human supervision for low-resource settings where limited or even no labeled data is available. This paper investigates a new research field—data-efficient graph learning, which aims to push forward the performance boundary of graph ML models with different kinds of low-cost supervision signals. Specifically, we outline the fundamental research problems, review the current progress, and discuss the future prospects of data-efficient graph learning, aiming to illuminate the path for subsequent research in this field.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 4","pages":"549-560"},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ai Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1