Wasserstofflogistik: flüssige organische Wasserstoffträger

IF 0.9 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Chemie in Unserer Zeit Pub Date : 2023-10-12 DOI:10.1002/ciuz.202300017
Dr. Michael Geißelbrecht, Dr. Franziska Auer, Stephan Kiermaier, Prof. Dr. Peter Wasserscheid
{"title":"Wasserstofflogistik: flüssige organische Wasserstoffträger","authors":"Dr. Michael Geißelbrecht,&nbsp;Dr. Franziska Auer,&nbsp;Stephan Kiermaier,&nbsp;Prof. Dr. Peter Wasserscheid","doi":"10.1002/ciuz.202300017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Liquid Organic Hydrogen Carriers (LOHCs) represent a promising alternative for the storage and transport of the green energy carrier hydrogen. Compared to conventional methods, such as compression and liquefaction, the LOHC technology offers advantages in terms of safety and loss-free storage at comparable volumetric energy density. Due to reversible chemical bonding of the hydrogen in the LOHC fluid, the latter can be regarded as a liquid returnable bottle. The storage and release take place in each case via a chemical reaction. In this article, various application scenarios of the LOHC technology and related current projects are presented. In summary, it can be stated that the supply of buildings with electricity and heat can be realised by combining LOHC dehydrogenation and a solid oxide fuel cell (SOFC). The climate-neutral supply of industrial parks can be improved by integrating a seasonal LOHC storage system into an existing heating network. The coupling with a combined heat and power plant enables the use of all heat flows and a high storage efficiency. In addition, the LOHC technology can contribute to the realisation of safe, cheap and emission-free rail transport on non-electrified lines. In contrast to the use of gaseous hydrogen as fuel, the existing infrastructure for diesel can be further used for refuelling trains with the liquid LOHC storage medium.</p>\n </div>","PeriodicalId":9911,"journal":{"name":"Chemie in Unserer Zeit","volume":"58 1","pages":"52-60"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie in Unserer Zeit","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ciuz.202300017","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid Organic Hydrogen Carriers (LOHCs) represent a promising alternative for the storage and transport of the green energy carrier hydrogen. Compared to conventional methods, such as compression and liquefaction, the LOHC technology offers advantages in terms of safety and loss-free storage at comparable volumetric energy density. Due to reversible chemical bonding of the hydrogen in the LOHC fluid, the latter can be regarded as a liquid returnable bottle. The storage and release take place in each case via a chemical reaction. In this article, various application scenarios of the LOHC technology and related current projects are presented. In summary, it can be stated that the supply of buildings with electricity and heat can be realised by combining LOHC dehydrogenation and a solid oxide fuel cell (SOFC). The climate-neutral supply of industrial parks can be improved by integrating a seasonal LOHC storage system into an existing heating network. The coupling with a combined heat and power plant enables the use of all heat flows and a high storage efficiency. In addition, the LOHC technology can contribute to the realisation of safe, cheap and emission-free rail transport on non-electrified lines. In contrast to the use of gaseous hydrogen as fuel, the existing infrastructure for diesel can be further used for refuelling trains with the liquid LOHC storage medium.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢物流:液态有机氢载体
液态有机氢载体(LOHC)是储存和运输绿色能源载体氢的一种很有前途的替代方法。与压缩和液化等传统方法相比,液态有机氢载体技术在安全和无损耗存储方面具有优势,而且体积能量密度相当。由于 LOHC 流体中氢的化学键是可逆的,因此后者可被视为液态可回收瓶。在每种情况下,储存和释放都是通过化学反应进行的。本文介绍了 LOHC 技术的各种应用场景和当前的相关项目。总之,LOHC 脱氢技术与固体氧化物燃料电池(SOFC)相结合,可以为建筑物提供电力和热能。通过在现有供热网络中集成一个季节性 LOHC 储存系统,可以改善工业园区的气候中和供应。通过与热电联产装置的耦合,可以利用所有热流并实现较高的存储效率。此外,LOHC 技术还有助于在非电气化线路上实现安全、廉价和无排放的铁路运输。与使用气态氢作为燃料不同的是,现有的柴油基础设施可进一步用于使用液态 LOHC 储存介质为列车加油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemie in Unserer Zeit
Chemie in Unserer Zeit 化学-化学综合
CiteScore
0.70
自引率
75.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Chemie in unserer Zeit informiert zuverlässig über aktuelle Entwicklungen aus der Chemie und ihren Nachbardisziplinen. Der Leser erhält spannende Einblicke in alle Bereiche dieser zukunftsträchtigen Wissenschaft, dabei werden auch komplexe Sachverhalte verständlich aufbereitet. Namhafte Experten bringen Neuentwicklungen von großer Tragweite näher - farbig illustriert und leserfreundlich präsentiert. Von wissenschaftlichen Übersichten, studienbegleitenden Materialien, nachvollziehbaren Experimenten bis hin zu brisanten Themen aus Umweltchemie und aktueller gesellschaftlicher Diskussion. Übersichtsartikel und abwechslungsreiche Rubriken vermitteln Fachwissen auf unterhaltsame Art und geben eine Hilfe bei der Orientierung im Fachgebiet.
期刊最新文献
Carl Bosch – kantig, wissbegierig Astropharmazie und Astrotoxikologie Sauerstoff Inhalt: Chemie in unserer Zeit 5/2024 Können Ingwer und Zink das Immunsystem unterstützen?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1