{"title":"Advances and Prospects in Understanding Vertebrate Cardiac Conduction System, Pacemaker Cell, and Cardiac Muscle Development: Toward Novel Biological Therapies","authors":"Ridwan Opeyemi Bello, Shannon Frew, Yusra Siddiqui, Rashid Minhas","doi":"10.3390/muscles2040026","DOIUrl":null,"url":null,"abstract":"The heart is composed of muscle cells called cardiomyocytes, including a specialized population named pacemaker cells that form the cardiac conduction system (CCS), which is responsible for generating the action potential dictating heart contractions. Failure of the CCS system leads to cardiac arrhythmias, which require complicated therapies and often the surgical implantation of electrical pacemakers. However, recent research has focused on the development of novel therapies using biological pacemakers that aim to substitute electrical devices. While most signaling pathways and transcription factors involved in the development of the pacemaker cells are known, the upstream regulatory networks need to be predicted through computer-based databases, mathematical modeling, as well as the functional testing of the regulatory elements in vivo, indicating the need for further research. Here, we summarize the current knowledge about the vertebrate myocardial CCS system and the development of the pacemaker cells, as well as emphasize the areas of future research to clarify the regulation of muscle pacemaker cells and the ease of development of biological therapies.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"249 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MLTJ-Muscles Ligaments and Tendons Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/muscles2040026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
The heart is composed of muscle cells called cardiomyocytes, including a specialized population named pacemaker cells that form the cardiac conduction system (CCS), which is responsible for generating the action potential dictating heart contractions. Failure of the CCS system leads to cardiac arrhythmias, which require complicated therapies and often the surgical implantation of electrical pacemakers. However, recent research has focused on the development of novel therapies using biological pacemakers that aim to substitute electrical devices. While most signaling pathways and transcription factors involved in the development of the pacemaker cells are known, the upstream regulatory networks need to be predicted through computer-based databases, mathematical modeling, as well as the functional testing of the regulatory elements in vivo, indicating the need for further research. Here, we summarize the current knowledge about the vertebrate myocardial CCS system and the development of the pacemaker cells, as well as emphasize the areas of future research to clarify the regulation of muscle pacemaker cells and the ease of development of biological therapies.
期刊介绍:
MLTJ (Muscle, Ligaments and Tendons Journal) is an open access, peer-reviewed online journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal, ligament, tendon, public health, exercise physiology and kinesiology issues. Muscle, Ligaments and Tendons Journal (MLTJ) provides the platform for exchange of new clinical and scientific information in the most precise and expeditious way to achieve timely dissemination of information and cross-fertilization of ideas. It is the official journal of the Italian Society of Muscles, Ligaments and Tendons (I.S.Mu.L.T.), Società Italiana Terapia con Onde D’urto (S.I.T.O.D.) and Società Italiana Studio Piede e Caviglia (S.I.S.P.E.C)