Cong Mao, Jiali Wang, Mingjun Zhang, Xincheng Wang, Yuanqiang Luo, Weidong Tang, Kun Tang, Zhuming Bi, Yongle Hu, Zhenheng Lin
{"title":"Prediction of Grinding Force by an Electroplated Grinding Wheel with Orderly-Micro-Grooves","authors":"Cong Mao, Jiali Wang, Mingjun Zhang, Xincheng Wang, Yuanqiang Luo, Weidong Tang, Kun Tang, Zhuming Bi, Yongle Hu, Zhenheng Lin","doi":"10.1186/s10033-023-00937-y","DOIUrl":null,"url":null,"abstract":"Abstract The ability to predict a grinding force is important to control, monitor, and optimize the grinding process. Few theoretical models were developed to predict grinding forces when a structured wheel was used in a grinding process. This paper aimed to establish a single-grit cutting force model to predict the ploughing, friction and cutting forces in a grinding process. It took into the consideration of actual topography of the grinding wheel, and a theoretical grinding force model for grinding hardened AISI 52100 by the wheel with orderly-micro-grooves was proposed. The model was innovative in the sense that it represented the random thickness of undeformed chips by a probabilistic expression, and it reflected the microstructure characteristics of the structured wheel explicitly. Note that the microstructure depended on the randomness of the protruding heights and distribution density of the grits over the wheel. The proposed force prediction model was validated by surface grinding experiments, and the results showed (1) a good agreement of the predicted and measured forces and (2) a good agreement of the changes of the grinding forces along with the changes of grinding parameters in the prediction model and experiments. This research proposed a theoretical grinding force model of an electroplated grinding wheel with orderly-micro-grooves which is accurate, reliable and effective in predicting grinding forces.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"98 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00937-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The ability to predict a grinding force is important to control, monitor, and optimize the grinding process. Few theoretical models were developed to predict grinding forces when a structured wheel was used in a grinding process. This paper aimed to establish a single-grit cutting force model to predict the ploughing, friction and cutting forces in a grinding process. It took into the consideration of actual topography of the grinding wheel, and a theoretical grinding force model for grinding hardened AISI 52100 by the wheel with orderly-micro-grooves was proposed. The model was innovative in the sense that it represented the random thickness of undeformed chips by a probabilistic expression, and it reflected the microstructure characteristics of the structured wheel explicitly. Note that the microstructure depended on the randomness of the protruding heights and distribution density of the grits over the wheel. The proposed force prediction model was validated by surface grinding experiments, and the results showed (1) a good agreement of the predicted and measured forces and (2) a good agreement of the changes of the grinding forces along with the changes of grinding parameters in the prediction model and experiments. This research proposed a theoretical grinding force model of an electroplated grinding wheel with orderly-micro-grooves which is accurate, reliable and effective in predicting grinding forces.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.