Innovative Teaching Via Sustainable Vocational Education with an Improved Ant Colony Algorithm

Yan Xia
{"title":"Innovative Teaching Via Sustainable Vocational Education with an Improved Ant Colony Algorithm","authors":"Yan Xia","doi":"10.5573/ieiespc.2023.12.5.379","DOIUrl":null,"url":null,"abstract":"Although students’ test scores provide an important reference for teaching and learning, research scholars still need to objectively analyze the scores. Under the current situation where English performance of vocational education students does not achieve satisfactory results, this research uses a clustering algorithm to improve on the ant colony optimization algorithm. This ant colony clustering analysis algorithm is improved by incorporating two optimization strategies, and the test scores of vocational education students are introduced as the original data for cluster analysis. The optimal number of ant colonies is nine, when the three error values of the two ant colony algorithms are minimized. The convergence values of the three ant colony algorithms are smallest when there are 200 training cycles or when the training batch size is 1000, resulting in upgraded ant colony clustering algorithm convergence values of 0.498 and 1.523, respectively. The performance of the student evaluation model combined with the ant colony clustering optimization algorithm improved, followed by CF, FOA, and BP. KNN had the worst performance. Data mining on student performance can be done via research that can provide specialized advice on students","PeriodicalId":37326,"journal":{"name":"IEIE Transactions on Smart Processing and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEIE Transactions on Smart Processing and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5573/ieiespc.2023.12.5.379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Although students’ test scores provide an important reference for teaching and learning, research scholars still need to objectively analyze the scores. Under the current situation where English performance of vocational education students does not achieve satisfactory results, this research uses a clustering algorithm to improve on the ant colony optimization algorithm. This ant colony clustering analysis algorithm is improved by incorporating two optimization strategies, and the test scores of vocational education students are introduced as the original data for cluster analysis. The optimal number of ant colonies is nine, when the three error values of the two ant colony algorithms are minimized. The convergence values of the three ant colony algorithms are smallest when there are 200 training cycles or when the training batch size is 1000, resulting in upgraded ant colony clustering algorithm convergence values of 0.498 and 1.523, respectively. The performance of the student evaluation model combined with the ant colony clustering optimization algorithm improved, followed by CF, FOA, and BP. KNN had the worst performance. Data mining on student performance can be done via research that can provide specialized advice on students
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进蚁群算法的可持续职业教育创新教学
虽然学生的考试成绩为教与学提供了重要的参考,但研究学者仍然需要客观地分析成绩。在高职学生英语成绩不理想的现状下,本研究采用聚类算法对蚁群优化算法进行改进。采用两种优化策略对蚁群聚类分析算法进行改进,并引入职教学生考试成绩作为聚类分析的原始数据。当两种蚁群算法的三个误差值均达到最小时,蚁群的最优数量为9个。当训练周期为200个或训练批数为1000个时,三种蚁群算法的收敛值最小,升级后的蚁群聚类算法收敛值分别为0.498和1.523。结合蚁群聚类优化算法的学生评价模型性能提高,其次是CF、FOA和BP。KNN的表现最差。学生表现的数据挖掘可以通过研究来完成,这些研究可以为学生提供专门的建议
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEIE Transactions on Smart Processing and Computing
IEIE Transactions on Smart Processing and Computing Engineering-Electrical and Electronic Engineering
CiteScore
1.00
自引率
0.00%
发文量
39
期刊介绍: IEIE Transactions on Smart Processing & Computing (IEIE SPC) is a regular academic journal published by the IEIE (Institute of Electronics and Information Engineers). This journal is published bimonthly (the end of February, April, June, August, October, and December). The topics of the new journal include smart signal processing, smart wireless communications, and smart computing. Since all electronic devices have become human brain-like, signal processing, wireless communications, and computing are required to be smarter than traditional systems. Additionally, electronic computing devices have become smaller, and more mobile. Thus, we call for papers sharing the results of the state-of-art research in various fields of interest. In order to quickly disseminate new technologies and ideas for the smart signal processing, wireless communications, and computing, we publish our journal online only. Our most important aim is to publish the accepted papers quickly after receiving the manuscript. Our journal consists of regular and special issue papers. The papers are strictly peer-reviewed. Both theoretical and practical contributions are encouraged for our Transactions.
期刊最新文献
Innovative Teaching Via Sustainable Vocational Education with an Improved Ant Colony Algorithm Review of Spatial and Temporal Color Constancy Generating Sector Beam Patterns in Sparse Cylindrical Sonar Arrays Recognition and Identification of College Students" Classroom Behaviors through Deep Learning Study of Automatic Piano Transcription Algorithms based on the Polyphonic Properties of Piano Audio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1