Development of a Practical Synthetic Method for Clinical Candidate 3-(2-{3-[(2,4-Diamino-6-ethylpyrimidin-5-yl)oxy]propoxy} phenyl)propanoic acid (P218) and Its Hydroxylated Metabolites
{"title":"Development of a Practical Synthetic Method for Clinical Candidate 3-(2-{3-[(2,4-Diamino-6-ethylpyrimidin-5-yl)oxy]propoxy} phenyl)propanoic acid (P218) and Its Hydroxylated Metabolites","authors":"Nitipol Srimongkolpithak, Onanong Vorasin, Tanawat Phumjan, Siriporn Saepua, Daniel Iwaniuk, Sumalee Kamchonwongpaisan, Yongyuth Yuthavong, Chawanee Thongpanchang","doi":"10.1055/s-0042-1751502","DOIUrl":null,"url":null,"abstract":"Abstract 3-(2-{3-[(2,4-Diamino-6-ethylpyrimidin-5-yl)oxy]propoxy}phenyl)propanoic acid, known as P218, has demonstrated great potency and safety in preclinical and human studies. However, the previous synthetic methods for P218 gave low yields and required hazardous reagents and challenging procedures. In this study, we have successfully developed a decagram-scale synthetic route for P218 with practical and scalable methods for large-scale production. Furthermore, this is also a first report of a novel synthetic approach for P218-OH, a hydroxylated metabolite of P218, by modification of our discovery route. Our synthetic procedures for P218 and P218-OH are a significant advancement in drug development processes, including manufacturing processes and drug metabolism studies.","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"326 ","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis-Stuttgart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1751502","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract 3-(2-{3-[(2,4-Diamino-6-ethylpyrimidin-5-yl)oxy]propoxy}phenyl)propanoic acid, known as P218, has demonstrated great potency and safety in preclinical and human studies. However, the previous synthetic methods for P218 gave low yields and required hazardous reagents and challenging procedures. In this study, we have successfully developed a decagram-scale synthetic route for P218 with practical and scalable methods for large-scale production. Furthermore, this is also a first report of a novel synthetic approach for P218-OH, a hydroxylated metabolite of P218, by modification of our discovery route. Our synthetic procedures for P218 and P218-OH are a significant advancement in drug development processes, including manufacturing processes and drug metabolism studies.
期刊介绍:
SYNTHESIS is an international full-paper journal devoted to the advancement of the science of chemical synthesis. It covers all fields of organic chemistry involving synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines. SYNTHESIS provides dependable research results with detailed and reliable experimental procedures and full characterization of all important new products as well as scientific primary data.