{"title":"Attomole Electrochemical Detection of MicroRNAs Based on Surface-Initiated Enzymatic Polymerization Coupled with Copper Enhancement","authors":"Wenyuan Zhu, Yuzhi Xu, Yanfei Zhang, Si-Yang Liu, Zong Dai, Xiaoyong Zou","doi":"10.3390/targets1020007","DOIUrl":null,"url":null,"abstract":"The sensitive and effective detection of microRNAs (miRNAs) is of great significance since miRNAs have been proven to have undeniable importance in participating in many biological processes. Herein, we present a novel, sensitive, label-free electrochemical miRNA detection method. Three signal amplification techniques are incorporated in this method, including the efficient conjugate of primer-modified polystyrene spheres (PS) with magnetic beads (MBs) triggered by target miRNA, template-free surface-initiated enzymatic polymerization (SIEP) on the primers, and the use of copper ions in square wave voltammetry (SWV) for detecting acidically depurinated primers. Cooperating with the electrochemical approach, this method was able to achieve a detection limit of 120 aM. With an attomole level of sensitivity and easiness of manipulation, this novel method is suitable for miRNA routine detection in both research and clinical aspects.","PeriodicalId":101208,"journal":{"name":"TARGETS","volume":"461 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TARGETS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/targets1020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The sensitive and effective detection of microRNAs (miRNAs) is of great significance since miRNAs have been proven to have undeniable importance in participating in many biological processes. Herein, we present a novel, sensitive, label-free electrochemical miRNA detection method. Three signal amplification techniques are incorporated in this method, including the efficient conjugate of primer-modified polystyrene spheres (PS) with magnetic beads (MBs) triggered by target miRNA, template-free surface-initiated enzymatic polymerization (SIEP) on the primers, and the use of copper ions in square wave voltammetry (SWV) for detecting acidically depurinated primers. Cooperating with the electrochemical approach, this method was able to achieve a detection limit of 120 aM. With an attomole level of sensitivity and easiness of manipulation, this novel method is suitable for miRNA routine detection in both research and clinical aspects.