Brajendra K. Singh, Sumit Kumar, Aditi Arora, Sandeep Kumar, Priti Kumari, Sunil K. Singh
{"title":"Diastereoselective Synthesis of Carbohydrate Conjugates: Pyrano[3,2-c]quinolones","authors":"Brajendra K. Singh, Sumit Kumar, Aditi Arora, Sandeep Kumar, Priti Kumari, Sunil K. Singh","doi":"10.1055/s-0042-1751505","DOIUrl":null,"url":null,"abstract":"Abstract A facile and efficient protocol for the diastereoselective synthesis of pyrano[3,2-c]quinolone carbohydrate derivatives from Perlin aldehydes and 4-hydroxyquinolones has been developed using a one-pot condensation at room temperature. In this investigation, glucose and galactose were employed as inexpensive starting materials to synthesize two sets of pyrano[3,2-c]quinolone-based carbohydrate conjugates. A total of sixteen novel compounds were successfully synthesized using this methodology in good to excellent yields. The reaction exhibited remarkable diastereoselectivity, resulting in a single diastereomeric product with a diastereomeric excess (dr) 97:3 for glucose, while a diastereomeric mixture with a diastereomeric excess (dr) 67:33 was obtained for galactose. The structural characterization of all sixteen compounds was carried out using various analytical techniques, including IR, 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HETCOR experiments, 2D NOESY NMR, and HRMS data. Additionally, the scalability of the protocol was successfully demonstrated by synthesizing one of the compounds on a gram scale, highlighting its potential for large-scale production.","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"43 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis-Stuttgart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1751505","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A facile and efficient protocol for the diastereoselective synthesis of pyrano[3,2-c]quinolone carbohydrate derivatives from Perlin aldehydes and 4-hydroxyquinolones has been developed using a one-pot condensation at room temperature. In this investigation, glucose and galactose were employed as inexpensive starting materials to synthesize two sets of pyrano[3,2-c]quinolone-based carbohydrate conjugates. A total of sixteen novel compounds were successfully synthesized using this methodology in good to excellent yields. The reaction exhibited remarkable diastereoselectivity, resulting in a single diastereomeric product with a diastereomeric excess (dr) 97:3 for glucose, while a diastereomeric mixture with a diastereomeric excess (dr) 67:33 was obtained for galactose. The structural characterization of all sixteen compounds was carried out using various analytical techniques, including IR, 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HETCOR experiments, 2D NOESY NMR, and HRMS data. Additionally, the scalability of the protocol was successfully demonstrated by synthesizing one of the compounds on a gram scale, highlighting its potential for large-scale production.
期刊介绍:
SYNTHESIS is an international full-paper journal devoted to the advancement of the science of chemical synthesis. It covers all fields of organic chemistry involving synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines. SYNTHESIS provides dependable research results with detailed and reliable experimental procedures and full characterization of all important new products as well as scientific primary data.