{"title":"Two-dimensional finite-difference time-domain simulation of moving sound source and receiver with directivity","authors":"Takao Tsuchiya, Yusuke Makino, Yu Teshima, Shizuko Hiryu","doi":"10.1250/ast.44.101","DOIUrl":null,"url":null,"abstract":"This paper reports on the implementation of a moving sound source and receiver with directivity in the two-dimensional finite-difference time-domain (FDTD) method. A two-dimensional fundamental solution of a moving monopole source is theoretically derived. Then, a fundamental solution of a moving dipole source is obtained by differentiating the fundamental solution of a monopole source in space. Finally, the directivity of moving monopole, dipole, and cardioid sources is theoretically derived. Numerical experiments performed on the two-dimensional sound field showed that the effect of moving velocity on amplitude differs for the monopole and dipole sources. Furthermore, it was found that directivity characteristics of dipole and cardioid sources vary depending on the beam steering angle and moving direction. The present method can be accurately applied to the moving sound source and receiver with directivity.","PeriodicalId":46068,"journal":{"name":"Acoustical Science and Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1250/ast.44.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper reports on the implementation of a moving sound source and receiver with directivity in the two-dimensional finite-difference time-domain (FDTD) method. A two-dimensional fundamental solution of a moving monopole source is theoretically derived. Then, a fundamental solution of a moving dipole source is obtained by differentiating the fundamental solution of a monopole source in space. Finally, the directivity of moving monopole, dipole, and cardioid sources is theoretically derived. Numerical experiments performed on the two-dimensional sound field showed that the effect of moving velocity on amplitude differs for the monopole and dipole sources. Furthermore, it was found that directivity characteristics of dipole and cardioid sources vary depending on the beam steering angle and moving direction. The present method can be accurately applied to the moving sound source and receiver with directivity.
期刊介绍:
Acoustical Science and Technology(AST) is a bimonthly open-access journal edited by the Acoustical Society of Japan and was established in 1980 as the Journal of Acoustical Society of Japan (E). The title of the journal was changed to the current title in 2001. AST publishes about 100 high-quality articles (including papers, technical reports, and acoustical letters) each year. The scope of the journal covers all fields of acoustics, both scientific and technological, including (but not limited to) the following research areas. Psychological and Physiological Acoustics Speech Ultrasonics Underwater Acoustics Noise and Vibration Electroacoustics Musical Acoustics Architectural Acoustics Sonochemistry Acoustic Imaging.