Linear-depth quantum circuits for loading Fourier approximations of arbitrary functions

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2023-10-11 DOI:10.1088/2058-9565/acfc62
Mudassir Moosa, Thomas Watts, Yiyou Chen, Abhijat Sarma, Peter L. McMahon
{"title":"Linear-depth quantum circuits for loading Fourier approximations of arbitrary functions","authors":"Mudassir Moosa, Thomas Watts, Yiyou Chen, Abhijat Sarma, Peter L. McMahon","doi":"10.1088/2058-9565/acfc62","DOIUrl":null,"url":null,"abstract":"Abstract The ability to efficiently load functions on quantum computers with high fidelity is essential for many quantum algorithms, including those for solving partial differential equations and Monte Carlo estimation. In this work, we introduce the Fourier series loader (FSL) method for preparing quantum states that exactly encode multi-dimensional Fourier series using linear-depth quantum circuits. Specifically, the FSL method prepares a ( Dn )-qubit state encoding the 2 Dn -point uniform discretization of a D -dimensional function specified by a D -dimensional Fourier series. A free parameter, m , which must be less than n , determines the number of Fourier coefficients, <?CDATA $2^{D(m+1)}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> </mml:math> , used to represent the function. The FSL method uses a quantum circuit of depth at most <?CDATA $2(n-2)+\\lceil \\log_{2}(n-m) \\rceil + 2^{D(m+1)+2} -2D(m+1)$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mrow> <mml:mo>⌈</mml:mo> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>log</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mo>⌉</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:math> , which is linear in the number of Fourier coefficients, and linear in the number of qubits ( Dn ) despite the fact that the loaded function’s discretization is over exponentially many (2 Dn ) points. The FSL circuit consists of at most <?CDATA $Dn+2^{D(m+1)+1}-1$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>D</mml:mi> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:math> single-qubit and <?CDATA $Dn(n+1)/2 + 2^{D(m+1)+1} - 3D(m+1) - 2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>D</mml:mi> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>−</mml:mo> <mml:mn>3</mml:mn> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:math> two-qubit gates; we present a classical compilation algorithm with runtime <?CDATA $O(2^{3D(m+1)})$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>D</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> to determine the FSL circuit for a given Fourier series. The FSL method allows for the highly accurate loading of complex-valued functions that are well-approximated by a Fourier series with finitely many terms. We report results from noiseless quantum circuit simulations, illustrating the capability of the FSL method to load various continuous 1D functions, and a discontinuous 1D function, on 20 qubits with infidelities of less than 10 −6 and 10 −3 , respectively. We also demonstrate the practicality of the FSL method for near-term quantum computers by presenting experiments performed on the Quantinuum H1-1 and H1-2 trapped-ion quantum computers: we loaded a complex-valued function on 3 qubits with a fidelity of over <?CDATA $95\\%$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>95</mml:mn> <mml:mi mathvariant=\"normal\">%</mml:mi> </mml:math> , as well as various 1D real-valued functions on up to 6 qubits with classical fidelities ≈99%, and a 2D function on 10 qubits with a classical fidelity ≈94%.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"59 1","pages":"0"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-9565/acfc62","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The ability to efficiently load functions on quantum computers with high fidelity is essential for many quantum algorithms, including those for solving partial differential equations and Monte Carlo estimation. In this work, we introduce the Fourier series loader (FSL) method for preparing quantum states that exactly encode multi-dimensional Fourier series using linear-depth quantum circuits. Specifically, the FSL method prepares a ( Dn )-qubit state encoding the 2 Dn -point uniform discretization of a D -dimensional function specified by a D -dimensional Fourier series. A free parameter, m , which must be less than n , determines the number of Fourier coefficients, 2 D ( m + 1 ) , used to represent the function. The FSL method uses a quantum circuit of depth at most 2 ( n 2 ) + log 2 ( n m ) + 2 D ( m + 1 ) + 2 2 D ( m + 1 ) , which is linear in the number of Fourier coefficients, and linear in the number of qubits ( Dn ) despite the fact that the loaded function’s discretization is over exponentially many (2 Dn ) points. The FSL circuit consists of at most D n + 2 D ( m + 1 ) + 1 1 single-qubit and D n ( n + 1 ) / 2 + 2 D ( m + 1 ) + 1 3 D ( m + 1 ) 2 two-qubit gates; we present a classical compilation algorithm with runtime O ( 2 3 D ( m + 1 ) ) to determine the FSL circuit for a given Fourier series. The FSL method allows for the highly accurate loading of complex-valued functions that are well-approximated by a Fourier series with finitely many terms. We report results from noiseless quantum circuit simulations, illustrating the capability of the FSL method to load various continuous 1D functions, and a discontinuous 1D function, on 20 qubits with infidelities of less than 10 −6 and 10 −3 , respectively. We also demonstrate the practicality of the FSL method for near-term quantum computers by presenting experiments performed on the Quantinuum H1-1 and H1-2 trapped-ion quantum computers: we loaded a complex-valued function on 3 qubits with a fidelity of over 95 % , as well as various 1D real-valued functions on up to 6 qubits with classical fidelities ≈99%, and a 2D function on 10 qubits with a classical fidelity ≈94%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于加载任意函数傅里叶近似的线性深度量子电路
在量子计算机上高效、高保真地加载函数的能力对于许多量子算法来说是必不可少的,包括求解偏微分方程和蒙特卡罗估计的量子算法。在这项工作中,我们介绍了傅立叶级数加载器(FSL)方法,用于使用线性深度量子电路制备精确编码多维傅立叶级数的量子态。具体而言,FSL方法制备了一个(Dn)-量子比特状态,编码由D维傅里叶级数指定的D维函数的2dn点均匀离散化。一个必须小于n的自由参数m决定了用来表示函数的傅里叶系数2d (m + 1)的数目。目前方法使用量子电路的深度最多2 (n−2)+⌈日志2 (n−m)⌉+ 2 D (m + 1) + 2−2 D (m + 1),这是傅里叶系数的线性数量,数量和线性量子比特(Dn)尽管加载函数的离散化是许多(Dn) 2点在成倍增长。FSL电路最多由dn + 2d (m + 1) + 1−1个单量子比特和dn (n + 1) / 2 + 2d (m + 1) + 1−3 D (m + 1)−2个双量子比特门组成;我们提出了一种经典的编译算法,在运行时间为0 (2 3 D (m + 1))的情况下确定给定傅里叶级数的FSL电路。FSL方法允许用有限多项的傅立叶级数很好地近似的复值函数的高精度加载。我们报告了无噪声量子电路模拟的结果,说明了FSL方法在20个量子比特上加载各种连续1D函数和不连续1D函数的能力,不忠实度分别小于10−6和10−3。我们还通过在量子H1-1和H1-2捕获离子量子计算机上进行的实验证明了FSL方法在近期量子计算机上的实用性:我们在3个量子位上加载了一个复值函数,保真度超过95%,以及在多达6个量子位上加载了各种一维实值函数,经典保真度≈99%,在10个量子位上加载了一个二维函数,经典保真度≈94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Near-optimal quantum kernel principal component analysis Bayesian optimization for state engineering of quantum gases Ramsey interferometry of nuclear spins in diamond using stimulated Raman adiabatic passage Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms Permutation-equivariant quantum convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1