Deep and machine learning for daily streamflow estimation: a focus on LSTM, RFR and XGBoost

IF 1.6 Q3 WATER RESOURCES Water Practice and Technology Pub Date : 2023-09-22 DOI:10.2166/wpt.2023.144
Özlem Terzi, Ecir Uğur Küçüksille, Tahsin Baykal, Dilek Taylan
{"title":"Deep and machine learning for daily streamflow estimation: a focus on LSTM, RFR and XGBoost","authors":"Özlem Terzi, Ecir Uğur Küçüksille, Tahsin Baykal, Dilek Taylan","doi":"10.2166/wpt.2023.144","DOIUrl":null,"url":null,"abstract":"Abstract Estimation accuracy of streamflow values is of great importance in terms of long-term planning of water resources and taking measures against disasters such as drought and flood. The flow formed in a river basin has a complex physical structure that changes depending on the characteristics of the basin (such as topography and vegetation), meteorological factors (such as precipitation, evaporation and infiltration) and human activities. In recent years, deep and machine learning techniques have attracted attention thanks to their powerful learning capabilities and accurate and reliable modeling of these complex and nonlinear processes. In this paper, long short-term memory (LSTM), random forest regression (RFR) and extreme gradient boosting (XGBoost) approaches were applied to estimate daily streamflow values of Göksu River, Turkey. Hyperparameter optimization was realized for deep and machine learning algorithms. The daily flow values between the years 1990–2010 were used and various input parameters were tried in the modeling. Examining the performance (R2, RMSE and MAE) of the models, the XGBoost model having five input parameters provided more appropriate results than other models. The R2 value of the XGBoost model was obtained as 0.871 for the testing set. Also, it is shown that deep and machine learning algorithms are used successfully for streamflow estimation.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2023.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Estimation accuracy of streamflow values is of great importance in terms of long-term planning of water resources and taking measures against disasters such as drought and flood. The flow formed in a river basin has a complex physical structure that changes depending on the characteristics of the basin (such as topography and vegetation), meteorological factors (such as precipitation, evaporation and infiltration) and human activities. In recent years, deep and machine learning techniques have attracted attention thanks to their powerful learning capabilities and accurate and reliable modeling of these complex and nonlinear processes. In this paper, long short-term memory (LSTM), random forest regression (RFR) and extreme gradient boosting (XGBoost) approaches were applied to estimate daily streamflow values of Göksu River, Turkey. Hyperparameter optimization was realized for deep and machine learning algorithms. The daily flow values between the years 1990–2010 were used and various input parameters were tried in the modeling. Examining the performance (R2, RMSE and MAE) of the models, the XGBoost model having five input parameters provided more appropriate results than other models. The R2 value of the XGBoost model was obtained as 0.871 for the testing set. Also, it is shown that deep and machine learning algorithms are used successfully for streamflow estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
每日流估计的深度和机器学习:关注LSTM, RFR和XGBoost
摘要流量值的估算精度对水资源的长期规划和采取措施应对旱涝灾害具有重要意义。河流流域内形成的水流具有复杂的物理结构,其变化取决于流域特征(如地形和植被)、气象因素(如降水、蒸发和入渗)以及人类活动。近年来,深度学习和机器学习技术因其强大的学习能力和对这些复杂非线性过程的准确可靠的建模而备受关注。本文采用长短期记忆(LSTM)、随机森林回归(RFR)和极端梯度增强(XGBoost)方法估算了土耳其Göksu河的日流量值。Hyperparameter优化实现深度和机器学习算法。采用1990-2010年的日流量值,并在建模中尝试了各种输入参数。检查性能(R2、RMSE和梅)的模型,XGBoost模型有五个输入参数提供了比其他模型更合适的结果。测试集XGBoost模型的R2值为0.871。此外,还成功地使用了深度和机器学习算法进行流量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
6.20%
发文量
136
审稿时长
14 weeks
期刊最新文献
Hydro-geochemical characterisation and modelling of groundwater in Chikun Local Government Area of Kaduna state, Nigeria A methodology for temporal disaggregation of daily rain gauge data using satellite precipitation product for improved accuracy in hydrologic simulation ACWA: an AI-driven cyber-physical testbed for intelligent water systems Phosphorus removal from ore waste in aqueous solution with different mass of ore waste adsorbent from the Johor mine site Assessment of risks to the quality of water supplied in Bushenyi-Uganda using the water safety plan approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1