Benjamin F. Williams, Meredith Durbin, Dustin Lang, Julianne J. Dalcanton, Andrew E. Dolphin, Adam Smercina, Petia Yanchulova Merica-Jones, Daniel R. Weisz, Eric F. Bell, Karoline M. Gilbert, Léo Girardi, Karl Gordon, Puragra Guhathakurta, L. Clifton Johnson, Tod R. Lauer, Anil Seth, Evan Skillman
{"title":"The Panchromatic Hubble Andromeda Treasury. XXI. The Legacy Resolved Stellar Photometry Catalog","authors":"Benjamin F. Williams, Meredith Durbin, Dustin Lang, Julianne J. Dalcanton, Andrew E. Dolphin, Adam Smercina, Petia Yanchulova Merica-Jones, Daniel R. Weisz, Eric F. Bell, Karoline M. Gilbert, Léo Girardi, Karl Gordon, Puragra Guhathakurta, L. Clifton Johnson, Tod R. Lauer, Anil Seth, Evan Skillman","doi":"10.3847/1538-4365/acea61","DOIUrl":null,"url":null,"abstract":"Abstract We present the final legacy version of stellar photometry for the Panchromatic Hubble Andromeda Treasury (PHAT) survey. We have reprocessed all of the Hubble Space Telescope Wide Field Camera 3 and Advanced Camera for Surveys near-ultraviolet (F275W, F336W), optical (F475W, F814W), and near-infrared (F110W, F160W) imaging from the PHAT survey using an improved method that optimized the survey depth and chip-gap coverage by including all overlapping exposures in all bands in the photometry. An additional improvement was gained through the use of charge transfer efficiency (CTE)–corrected input images, which provide more complete star finding as well as more reliable photometry for the NUV bands, which had no CTE correction in the previous version of the PHAT photometry. While this method requires significantly more computing resources and time than earlier versions where the photometry was performed on individual pointings, it results in smaller systematic instrumental completeness variations as demonstrated by cleaner maps in stellar density, and it results in optimal constraints on stellar fluxes in all bands from the survey data. Our resulting catalog has 138 million stars, 18% more than the previous catalog, with lower density regions gaining as much as 40% more stars. The new catalog produces nearly seamless population maps that show relatively well-mixed distributions for populations associated with ages older than 1–2 Gyr and highly structured distributions for the younger populations.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"30 1","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/acea61","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We present the final legacy version of stellar photometry for the Panchromatic Hubble Andromeda Treasury (PHAT) survey. We have reprocessed all of the Hubble Space Telescope Wide Field Camera 3 and Advanced Camera for Surveys near-ultraviolet (F275W, F336W), optical (F475W, F814W), and near-infrared (F110W, F160W) imaging from the PHAT survey using an improved method that optimized the survey depth and chip-gap coverage by including all overlapping exposures in all bands in the photometry. An additional improvement was gained through the use of charge transfer efficiency (CTE)–corrected input images, which provide more complete star finding as well as more reliable photometry for the NUV bands, which had no CTE correction in the previous version of the PHAT photometry. While this method requires significantly more computing resources and time than earlier versions where the photometry was performed on individual pointings, it results in smaller systematic instrumental completeness variations as demonstrated by cleaner maps in stellar density, and it results in optimal constraints on stellar fluxes in all bands from the survey data. Our resulting catalog has 138 million stars, 18% more than the previous catalog, with lower density regions gaining as much as 40% more stars. The new catalog produces nearly seamless population maps that show relatively well-mixed distributions for populations associated with ages older than 1–2 Gyr and highly structured distributions for the younger populations.
期刊介绍:
The Astrophysical Journal Supplement (ApJS) serves as an open-access journal that publishes significant articles featuring extensive data or calculations in the field of astrophysics. It also facilitates Special Issues, presenting thematically related papers simultaneously in a single volume.