Abtin Nourmohammadzadeh, Malek Sarhani, Stefan Voß
{"title":"A matheuristic approach for the family traveling salesman problem","authors":"Abtin Nourmohammadzadeh, Malek Sarhani, Stefan Voß","doi":"10.1007/s10732-023-09516-9","DOIUrl":null,"url":null,"abstract":"Abstract In the family traveling salesman problem (FTSP), there is a set of cities which are divided into a number of clusters called families. The salesman has to find a shortest possible tour visiting a specific number of cities from each of the families without any restriction of visiting one family before starting the visit of another one. In this work, the general concept of the Partial OPtimization Metaheuristic Under Special Intensification Conditions is linked with the exact optimization by a classical solver using a mathematical programming formulation for the FTSP to develop a matheuristic. Moreover, a genetic and a simulated annealing algorithm are used as metaheuristics embedded in the approach. The method is examined on a set of benchmark instances and its performance is favorably compared with a state-of-the-art approach from literature. Moreover, a careful analysis of the specific components of the approach is undertaken to provide insights into the impact of their interplay.","PeriodicalId":54810,"journal":{"name":"Journal of Heuristics","volume":"36 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heuristics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10732-023-09516-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In the family traveling salesman problem (FTSP), there is a set of cities which are divided into a number of clusters called families. The salesman has to find a shortest possible tour visiting a specific number of cities from each of the families without any restriction of visiting one family before starting the visit of another one. In this work, the general concept of the Partial OPtimization Metaheuristic Under Special Intensification Conditions is linked with the exact optimization by a classical solver using a mathematical programming formulation for the FTSP to develop a matheuristic. Moreover, a genetic and a simulated annealing algorithm are used as metaheuristics embedded in the approach. The method is examined on a set of benchmark instances and its performance is favorably compared with a state-of-the-art approach from literature. Moreover, a careful analysis of the specific components of the approach is undertaken to provide insights into the impact of their interplay.
期刊介绍:
The Journal of Heuristics provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly. It fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems. It considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.
The journal presents practical applications, theoretical developments, decision analysis models that consider issues of rational decision making with limited information, artificial intelligence-based heuristics applied to a wide variety of problems, learning paradigms, and computational experimentation.
Officially cited as: J Heuristics
Provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly.
Fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems.
Considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.