Thermal-degradation characteristics of mechanically nanofibrillated bleached pulps from hardwood and softwood

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Bioresources Pub Date : 2023-10-30 DOI:10.15376/biores.18.4.8573-8584
Akihiro Hideno
{"title":"Thermal-degradation characteristics of mechanically nanofibrillated bleached pulps from hardwood and softwood","authors":"Akihiro Hideno","doi":"10.15376/biores.18.4.8573-8584","DOIUrl":null,"url":null,"abstract":"Nanofibrillated cellulose (NFC) consists of ultrafine cellulose structures in which the fibrils can have widths in the range from about 5 to 100 nm. NFC has been studied and developed in the paper industry, using bleached pulp from wood as the raw material. One of the issues in the application of NFC is their heat resistance to thermal degradation. The production process of NFC results in a decrease in their pyrolysis temperature during the nanofibrillation of bleached pulp; however, the details behind the reason and mechanisms are still unclear. In this study, NFC was prepared from bleached hardwood and softwood pulp by mechanical nanofibrillation using a grinder, and the pyrolysis behavior was investigated. For both bleached pulps, a decrease in the pyrolysis temperature was observed after nanofibrillation. The results suggest that the decrease in the pyrolysis temperature from nanofibrillation is not due to damage of the crystalline cellulose by nano fibrillation, but the damage of the hemicellulose components in the surface of the cellulose microfibrils or the interface between the crystalline cellulose and hemicellulose. If the hemicellulose on the surface of crystalline cellulose could be removed from the NFC, then the decrease in the pyrolysis temperature could be suppressed.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"24 5","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.18.4.8573-8584","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofibrillated cellulose (NFC) consists of ultrafine cellulose structures in which the fibrils can have widths in the range from about 5 to 100 nm. NFC has been studied and developed in the paper industry, using bleached pulp from wood as the raw material. One of the issues in the application of NFC is their heat resistance to thermal degradation. The production process of NFC results in a decrease in their pyrolysis temperature during the nanofibrillation of bleached pulp; however, the details behind the reason and mechanisms are still unclear. In this study, NFC was prepared from bleached hardwood and softwood pulp by mechanical nanofibrillation using a grinder, and the pyrolysis behavior was investigated. For both bleached pulps, a decrease in the pyrolysis temperature was observed after nanofibrillation. The results suggest that the decrease in the pyrolysis temperature from nanofibrillation is not due to damage of the crystalline cellulose by nano fibrillation, but the damage of the hemicellulose components in the surface of the cellulose microfibrils or the interface between the crystalline cellulose and hemicellulose. If the hemicellulose on the surface of crystalline cellulose could be removed from the NFC, then the decrease in the pyrolysis temperature could be suppressed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硬木和软木机械纳米纤化漂白纸浆的热降解特性
纳米纤维化纤维素(NFC)由超细纤维素结构组成,其中原纤维的宽度范围约为5至100纳米。以漂白过的木浆为原料,在造纸工业中进行了NFC的研究和开发。近距离通信技术应用中的一个问题是其耐热性。NFC的产生导致漂白纸浆纳米纤化过程中热解温度降低;然而,原因和机制背后的细节仍不清楚。本研究以漂白后的硬木和软木浆为原料,采用机械纳米纤颤法制备了NFC,并对其热解行为进行了研究。两种漂白纸浆经过纳米纤颤后,热解温度均有所降低。结果表明,纳米纤维的热解温度降低不是由于纳米纤维损伤了结晶纤维素,而是由于纳米纤维损伤了纤维素微原表面的半纤维素成分或晶体纤维素与半纤维素的界面。如果能将结晶纤维素表面的半纤维素从NFC中去除,则可以抑制热解温度的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresources
Bioresources 工程技术-材料科学:纸与木材
CiteScore
2.90
自引率
13.30%
发文量
397
审稿时长
2.3 months
期刊介绍: The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.
期刊最新文献
Solid-state fermentation for gossypol detoxification and nutritive enrichment of cottonseed cake: A scale-up of batch fermentation process Crystallinity and chemical structure of Amazon wood species in a log yard after natural degradation Aquatic aerobic biodegradation of commonly flushed materials in aerobic wastewater treatment plant solids Mechanical and thermo-mechanical behaviors of snake grass fiber-reinforced epoxy composite Lignin-derived lithiophilic nitrogen-doped three-dimensional porous carbon as lithium growth guiding layers for lithium-metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1